Equivalent Markov processes under gauge group
- Autores
- Caruso, M.; Jarne, Cecilia Gisele
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We have studied Markov processes on denumerable state space and continuous time. We found that all these processes are connected via gauge transformations. We have used this result before as a method for resolution of equations, included the case where the sample space is time dependent in a previous work Phys. Rev. E 90, 022125 (2014). We found a general solution through a dilation of the state space, although the prior probability distribution of the states defined in this new space takes smaller values with respect to the one in the initial problem. The gauge (local) group of dilations modifies the distribution on the dilated space to restore the original process. In this work we show how Markov process in general could be linked via gauge (local) transformations and we present some illustrative examples for this results.
Fil: Caruso, M.. Universidad de Granada; España
Fil: Jarne, Cecilia Gisele. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
- Markov Processes
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/44535
Ver los metadatos del registro completo
id |
CONICETDig_d6d9c3a1735551f685cfe7906fe5062e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/44535 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Equivalent Markov processes under gauge groupCaruso, M.Jarne, Cecilia GiseleMarkov Processeshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We have studied Markov processes on denumerable state space and continuous time. We found that all these processes are connected via gauge transformations. We have used this result before as a method for resolution of equations, included the case where the sample space is time dependent in a previous work Phys. Rev. E 90, 022125 (2014). We found a general solution through a dilation of the state space, although the prior probability distribution of the states defined in this new space takes smaller values with respect to the one in the initial problem. The gauge (local) group of dilations modifies the distribution on the dilated space to restore the original process. In this work we show how Markov process in general could be linked via gauge (local) transformations and we present some illustrative examples for this results.Fil: Caruso, M.. Universidad de Granada; EspañaFil: Jarne, Cecilia Gisele. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/44535Caruso, M.; Jarne, Cecilia Gisele; Equivalent Markov processes under gauge group; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 92; 15; 11-2015; 1-71539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.052132info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.92.052132info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:44Zoai:ri.conicet.gov.ar:11336/44535instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:44.403CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Equivalent Markov processes under gauge group |
title |
Equivalent Markov processes under gauge group |
spellingShingle |
Equivalent Markov processes under gauge group Caruso, M. Markov Processes |
title_short |
Equivalent Markov processes under gauge group |
title_full |
Equivalent Markov processes under gauge group |
title_fullStr |
Equivalent Markov processes under gauge group |
title_full_unstemmed |
Equivalent Markov processes under gauge group |
title_sort |
Equivalent Markov processes under gauge group |
dc.creator.none.fl_str_mv |
Caruso, M. Jarne, Cecilia Gisele |
author |
Caruso, M. |
author_facet |
Caruso, M. Jarne, Cecilia Gisele |
author_role |
author |
author2 |
Jarne, Cecilia Gisele |
author2_role |
author |
dc.subject.none.fl_str_mv |
Markov Processes |
topic |
Markov Processes |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We have studied Markov processes on denumerable state space and continuous time. We found that all these processes are connected via gauge transformations. We have used this result before as a method for resolution of equations, included the case where the sample space is time dependent in a previous work Phys. Rev. E 90, 022125 (2014). We found a general solution through a dilation of the state space, although the prior probability distribution of the states defined in this new space takes smaller values with respect to the one in the initial problem. The gauge (local) group of dilations modifies the distribution on the dilated space to restore the original process. In this work we show how Markov process in general could be linked via gauge (local) transformations and we present some illustrative examples for this results. Fil: Caruso, M.. Universidad de Granada; España Fil: Jarne, Cecilia Gisele. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We have studied Markov processes on denumerable state space and continuous time. We found that all these processes are connected via gauge transformations. We have used this result before as a method for resolution of equations, included the case where the sample space is time dependent in a previous work Phys. Rev. E 90, 022125 (2014). We found a general solution through a dilation of the state space, although the prior probability distribution of the states defined in this new space takes smaller values with respect to the one in the initial problem. The gauge (local) group of dilations modifies the distribution on the dilated space to restore the original process. In this work we show how Markov process in general could be linked via gauge (local) transformations and we present some illustrative examples for this results. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/44535 Caruso, M.; Jarne, Cecilia Gisele; Equivalent Markov processes under gauge group; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 92; 15; 11-2015; 1-7 1539-3755 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/44535 |
identifier_str_mv |
Caruso, M.; Jarne, Cecilia Gisele; Equivalent Markov processes under gauge group; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 92; 15; 11-2015; 1-7 1539-3755 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.052132 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.92.052132 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269538355249152 |
score |
13.13397 |