Learning Markov Network Structures Constrained by Context-Specific Independences

Autores
Edera, Alejandro; Schluter, Federico Enrique Adolfo; Bromberg, Facundo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work focuses on learning the structure of Markov networks from data. Markov networks are parametric models for compactly representing complex probability distributions. These models are composed by: a structure and numerical weights, where the structure describes independences that hold in the distribution. Depending on which is the goal of structure learning, learning algorithms can be divided into: density estimation algorithms, where structure is learned for answering inference queries; and knowledge discovery algorithms, where structure is learned for describing independences qualitatively. The latter algorithms present an important limitation for describing independences because they use a single graph; a coarse grain structure representation which cannot represent flexible independences. For instance, context-specific independences cannot be described by a single graph. To overcome this limitation, this work proposes a new alternative representation named canonical model as well as the CSPC algorithm; a novel knowledge discovery algorithm for learning canonical models by using context-specific independences as constraints. On an extensive empirical evaluation, CSPC learns more accurate structures than state-of-the-art density estimation and knowledge discovery algorithms. Moreover, for answering inference queries, our approach obtains competitive results against density estimation algorithms, significantly outperforming knowledge discovery algorithms.
Fil: Edera, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; Argentina
Fil: Schluter, Federico Enrique Adolfo. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Bromberg, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; Argentina
Materia
Markov Network
Structure Learning
Context-specific independences
CSI Models
Knowledge discovery
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/32298

id CONICETDig_7b894d4054b8b558ffe3dbc089a15a71
oai_identifier_str oai:ri.conicet.gov.ar:11336/32298
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Learning Markov Network Structures Constrained by Context-Specific IndependencesEdera, AlejandroSchluter, Federico Enrique AdolfoBromberg, FacundoMarkov NetworkStructure LearningContext-specific independencesCSI ModelsKnowledge discoveryhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1This work focuses on learning the structure of Markov networks from data. Markov networks are parametric models for compactly representing complex probability distributions. These models are composed by: a structure and numerical weights, where the structure describes independences that hold in the distribution. Depending on which is the goal of structure learning, learning algorithms can be divided into: density estimation algorithms, where structure is learned for answering inference queries; and knowledge discovery algorithms, where structure is learned for describing independences qualitatively. The latter algorithms present an important limitation for describing independences because they use a single graph; a coarse grain structure representation which cannot represent flexible independences. For instance, context-specific independences cannot be described by a single graph. To overcome this limitation, this work proposes a new alternative representation named canonical model as well as the CSPC algorithm; a novel knowledge discovery algorithm for learning canonical models by using context-specific independences as constraints. On an extensive empirical evaluation, CSPC learns more accurate structures than state-of-the-art density estimation and knowledge discovery algorithms. Moreover, for answering inference queries, our approach obtains competitive results against density estimation algorithms, significantly outperforming knowledge discovery algorithms.Fil: Edera, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; ArgentinaFil: Schluter, Federico Enrique Adolfo. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Bromberg, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; ArgentinaWorld Scientific2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32298Bromberg, Facundo; Schluter, Federico Enrique Adolfo; Edera, Alejandro; Learning Markov Network Structures Constrained by Context-Specific Independences; World Scientific; International Journal On Artificial Intelligence Tools; 23; 6; 12-2014; 1-430218-21301793-6349CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0218213014600306info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218213014600306info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1307.3964info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:03:35Zoai:ri.conicet.gov.ar:11336/32298instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:03:36.149CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Learning Markov Network Structures Constrained by Context-Specific Independences
title Learning Markov Network Structures Constrained by Context-Specific Independences
spellingShingle Learning Markov Network Structures Constrained by Context-Specific Independences
Edera, Alejandro
Markov Network
Structure Learning
Context-specific independences
CSI Models
Knowledge discovery
title_short Learning Markov Network Structures Constrained by Context-Specific Independences
title_full Learning Markov Network Structures Constrained by Context-Specific Independences
title_fullStr Learning Markov Network Structures Constrained by Context-Specific Independences
title_full_unstemmed Learning Markov Network Structures Constrained by Context-Specific Independences
title_sort Learning Markov Network Structures Constrained by Context-Specific Independences
dc.creator.none.fl_str_mv Edera, Alejandro
Schluter, Federico Enrique Adolfo
Bromberg, Facundo
author Edera, Alejandro
author_facet Edera, Alejandro
Schluter, Federico Enrique Adolfo
Bromberg, Facundo
author_role author
author2 Schluter, Federico Enrique Adolfo
Bromberg, Facundo
author2_role author
author
dc.subject.none.fl_str_mv Markov Network
Structure Learning
Context-specific independences
CSI Models
Knowledge discovery
topic Markov Network
Structure Learning
Context-specific independences
CSI Models
Knowledge discovery
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This work focuses on learning the structure of Markov networks from data. Markov networks are parametric models for compactly representing complex probability distributions. These models are composed by: a structure and numerical weights, where the structure describes independences that hold in the distribution. Depending on which is the goal of structure learning, learning algorithms can be divided into: density estimation algorithms, where structure is learned for answering inference queries; and knowledge discovery algorithms, where structure is learned for describing independences qualitatively. The latter algorithms present an important limitation for describing independences because they use a single graph; a coarse grain structure representation which cannot represent flexible independences. For instance, context-specific independences cannot be described by a single graph. To overcome this limitation, this work proposes a new alternative representation named canonical model as well as the CSPC algorithm; a novel knowledge discovery algorithm for learning canonical models by using context-specific independences as constraints. On an extensive empirical evaluation, CSPC learns more accurate structures than state-of-the-art density estimation and knowledge discovery algorithms. Moreover, for answering inference queries, our approach obtains competitive results against density estimation algorithms, significantly outperforming knowledge discovery algorithms.
Fil: Edera, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; Argentina
Fil: Schluter, Federico Enrique Adolfo. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Bromberg, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; Argentina
description This work focuses on learning the structure of Markov networks from data. Markov networks are parametric models for compactly representing complex probability distributions. These models are composed by: a structure and numerical weights, where the structure describes independences that hold in the distribution. Depending on which is the goal of structure learning, learning algorithms can be divided into: density estimation algorithms, where structure is learned for answering inference queries; and knowledge discovery algorithms, where structure is learned for describing independences qualitatively. The latter algorithms present an important limitation for describing independences because they use a single graph; a coarse grain structure representation which cannot represent flexible independences. For instance, context-specific independences cannot be described by a single graph. To overcome this limitation, this work proposes a new alternative representation named canonical model as well as the CSPC algorithm; a novel knowledge discovery algorithm for learning canonical models by using context-specific independences as constraints. On an extensive empirical evaluation, CSPC learns more accurate structures than state-of-the-art density estimation and knowledge discovery algorithms. Moreover, for answering inference queries, our approach obtains competitive results against density estimation algorithms, significantly outperforming knowledge discovery algorithms.
publishDate 2014
dc.date.none.fl_str_mv 2014-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/32298
Bromberg, Facundo; Schluter, Federico Enrique Adolfo; Edera, Alejandro; Learning Markov Network Structures Constrained by Context-Specific Independences; World Scientific; International Journal On Artificial Intelligence Tools; 23; 6; 12-2014; 1-43
0218-2130
1793-6349
CONICET Digital
CONICET
url http://hdl.handle.net/11336/32298
identifier_str_mv Bromberg, Facundo; Schluter, Federico Enrique Adolfo; Edera, Alejandro; Learning Markov Network Structures Constrained by Context-Specific Independences; World Scientific; International Journal On Artificial Intelligence Tools; 23; 6; 12-2014; 1-43
0218-2130
1793-6349
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0218213014600306
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218213014600306
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1307.3964
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847426809322274816
score 13.10058