Learning Markov Network Structures Constrained by Context-Specific Independences
- Autores
- Edera, Alejandro; Schluter, Federico Enrique Adolfo; Bromberg, Facundo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work focuses on learning the structure of Markov networks from data. Markov networks are parametric models for compactly representing complex probability distributions. These models are composed by: a structure and numerical weights, where the structure describes independences that hold in the distribution. Depending on which is the goal of structure learning, learning algorithms can be divided into: density estimation algorithms, where structure is learned for answering inference queries; and knowledge discovery algorithms, where structure is learned for describing independences qualitatively. The latter algorithms present an important limitation for describing independences because they use a single graph; a coarse grain structure representation which cannot represent flexible independences. For instance, context-specific independences cannot be described by a single graph. To overcome this limitation, this work proposes a new alternative representation named canonical model as well as the CSPC algorithm; a novel knowledge discovery algorithm for learning canonical models by using context-specific independences as constraints. On an extensive empirical evaluation, CSPC learns more accurate structures than state-of-the-art density estimation and knowledge discovery algorithms. Moreover, for answering inference queries, our approach obtains competitive results against density estimation algorithms, significantly outperforming knowledge discovery algorithms.
Fil: Edera, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; Argentina
Fil: Schluter, Federico Enrique Adolfo. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Bromberg, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; Argentina - Materia
-
Markov Network
Structure Learning
Context-specific independences
CSI Models
Knowledge discovery - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32298
Ver los metadatos del registro completo
| id |
CONICETDig_7b894d4054b8b558ffe3dbc089a15a71 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32298 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Learning Markov Network Structures Constrained by Context-Specific IndependencesEdera, AlejandroSchluter, Federico Enrique AdolfoBromberg, FacundoMarkov NetworkStructure LearningContext-specific independencesCSI ModelsKnowledge discoveryhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1This work focuses on learning the structure of Markov networks from data. Markov networks are parametric models for compactly representing complex probability distributions. These models are composed by: a structure and numerical weights, where the structure describes independences that hold in the distribution. Depending on which is the goal of structure learning, learning algorithms can be divided into: density estimation algorithms, where structure is learned for answering inference queries; and knowledge discovery algorithms, where structure is learned for describing independences qualitatively. The latter algorithms present an important limitation for describing independences because they use a single graph; a coarse grain structure representation which cannot represent flexible independences. For instance, context-specific independences cannot be described by a single graph. To overcome this limitation, this work proposes a new alternative representation named canonical model as well as the CSPC algorithm; a novel knowledge discovery algorithm for learning canonical models by using context-specific independences as constraints. On an extensive empirical evaluation, CSPC learns more accurate structures than state-of-the-art density estimation and knowledge discovery algorithms. Moreover, for answering inference queries, our approach obtains competitive results against density estimation algorithms, significantly outperforming knowledge discovery algorithms.Fil: Edera, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; ArgentinaFil: Schluter, Federico Enrique Adolfo. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Bromberg, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; ArgentinaWorld Scientific2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32298Bromberg, Facundo; Schluter, Federico Enrique Adolfo; Edera, Alejandro; Learning Markov Network Structures Constrained by Context-Specific Independences; World Scientific; International Journal On Artificial Intelligence Tools; 23; 6; 12-2014; 1-430218-21301793-6349CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0218213014600306info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218213014600306info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1307.3964info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:03:35Zoai:ri.conicet.gov.ar:11336/32298instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:03:36.149CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Learning Markov Network Structures Constrained by Context-Specific Independences |
| title |
Learning Markov Network Structures Constrained by Context-Specific Independences |
| spellingShingle |
Learning Markov Network Structures Constrained by Context-Specific Independences Edera, Alejandro Markov Network Structure Learning Context-specific independences CSI Models Knowledge discovery |
| title_short |
Learning Markov Network Structures Constrained by Context-Specific Independences |
| title_full |
Learning Markov Network Structures Constrained by Context-Specific Independences |
| title_fullStr |
Learning Markov Network Structures Constrained by Context-Specific Independences |
| title_full_unstemmed |
Learning Markov Network Structures Constrained by Context-Specific Independences |
| title_sort |
Learning Markov Network Structures Constrained by Context-Specific Independences |
| dc.creator.none.fl_str_mv |
Edera, Alejandro Schluter, Federico Enrique Adolfo Bromberg, Facundo |
| author |
Edera, Alejandro |
| author_facet |
Edera, Alejandro Schluter, Federico Enrique Adolfo Bromberg, Facundo |
| author_role |
author |
| author2 |
Schluter, Federico Enrique Adolfo Bromberg, Facundo |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Markov Network Structure Learning Context-specific independences CSI Models Knowledge discovery |
| topic |
Markov Network Structure Learning Context-specific independences CSI Models Knowledge discovery |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
This work focuses on learning the structure of Markov networks from data. Markov networks are parametric models for compactly representing complex probability distributions. These models are composed by: a structure and numerical weights, where the structure describes independences that hold in the distribution. Depending on which is the goal of structure learning, learning algorithms can be divided into: density estimation algorithms, where structure is learned for answering inference queries; and knowledge discovery algorithms, where structure is learned for describing independences qualitatively. The latter algorithms present an important limitation for describing independences because they use a single graph; a coarse grain structure representation which cannot represent flexible independences. For instance, context-specific independences cannot be described by a single graph. To overcome this limitation, this work proposes a new alternative representation named canonical model as well as the CSPC algorithm; a novel knowledge discovery algorithm for learning canonical models by using context-specific independences as constraints. On an extensive empirical evaluation, CSPC learns more accurate structures than state-of-the-art density estimation and knowledge discovery algorithms. Moreover, for answering inference queries, our approach obtains competitive results against density estimation algorithms, significantly outperforming knowledge discovery algorithms. Fil: Edera, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; Argentina Fil: Schluter, Federico Enrique Adolfo. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Bromberg, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; Argentina |
| description |
This work focuses on learning the structure of Markov networks from data. Markov networks are parametric models for compactly representing complex probability distributions. These models are composed by: a structure and numerical weights, where the structure describes independences that hold in the distribution. Depending on which is the goal of structure learning, learning algorithms can be divided into: density estimation algorithms, where structure is learned for answering inference queries; and knowledge discovery algorithms, where structure is learned for describing independences qualitatively. The latter algorithms present an important limitation for describing independences because they use a single graph; a coarse grain structure representation which cannot represent flexible independences. For instance, context-specific independences cannot be described by a single graph. To overcome this limitation, this work proposes a new alternative representation named canonical model as well as the CSPC algorithm; a novel knowledge discovery algorithm for learning canonical models by using context-specific independences as constraints. On an extensive empirical evaluation, CSPC learns more accurate structures than state-of-the-art density estimation and knowledge discovery algorithms. Moreover, for answering inference queries, our approach obtains competitive results against density estimation algorithms, significantly outperforming knowledge discovery algorithms. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32298 Bromberg, Facundo; Schluter, Federico Enrique Adolfo; Edera, Alejandro; Learning Markov Network Structures Constrained by Context-Specific Independences; World Scientific; International Journal On Artificial Intelligence Tools; 23; 6; 12-2014; 1-43 0218-2130 1793-6349 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/32298 |
| identifier_str_mv |
Bromberg, Facundo; Schluter, Federico Enrique Adolfo; Edera, Alejandro; Learning Markov Network Structures Constrained by Context-Specific Independences; World Scientific; International Journal On Artificial Intelligence Tools; 23; 6; 12-2014; 1-43 0218-2130 1793-6349 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0218213014600306 info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218213014600306 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1307.3964 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
World Scientific |
| publisher.none.fl_str_mv |
World Scientific |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847426809322274816 |
| score |
13.10058 |