Técnicas de clasificación aplicadas al rendimiento académico

Autores
Herrera, Myriam; Lund, María Inés; Ruiz, Susana; Torres, Estela; Mallea, Adriana; Romagnano, María Gema
Año de publicación
2016
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
En muchas investigaciones se tiene necesidad de identificar cuáles son las características que diferencian unos grupos de sujetos u objetos respecto de otros, para así poder realizar predicciones. El análisis de conglomerados y el análisis discriminante, son técnicas que algunos autores ubican entre las más potentes para aplicar en investigaciones sociales, permiten clasificar sujetos u objetos a partir de características similares. Estas dos técnicas se pueden diferenciar por la manera de extraer conocimiento útil escondido en esos datos. El Análisis Discriminante cuenta con grupos de datos conocidos, con observaciones de unidades de pertenencia desconocida inicialmente y tiene que ser determinada a través del análisis de los datos. Este tipo de problemas de clasificación es referido como reconocimiento de patrones asistido o aprendizaje supervisado; en terminología estadística cae bajo el título de Análisis Discriminante. Por otro lado, hay problemas de clasificación donde los grupos son desconocidos a priori y el principal propósito del análisis es determinar los grupos a partir de los propios datos, de modo que las unidades dentro del mismo grupo sean, en algún sentido, más similares u homogéneas que aquellas que pertenecen a grupos diferentes. Este tipo de problema de clasificación es referido como reconocimiento de patrón no supervisado o conocimiento sin guía, y, en terminología estadística cae bajo el título de Análisis de Conglomerados. En este proyecto se aplicarán ambas técnicas o una combinación de ellas o una nueva técnica para analizar lo que llamamos rendimiento académico universitario. Se puede afirmar que, en general, un indicador directo de la calidad de la enseñanza es el rendimiento académico, medido a través del nivel alcanzado por los estudiantes. Vista la importancia del tema en este proyecto se determinarán las principales variables que influyen en el rendimiento como así también tipologías básicas de grupos, obtenidos de los alumnos universitarios tanto de la Facultad de Ciencias Exactas como de los alumnos de matemática de la Facultad de Filosofía de la UNSJ.
Eje: Bases de Datos y Minería de Datos
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Clasificación
rendimiento académico
calidad universitaria
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/52888

id SEDICI_1f1d8f83e35620f97eabbbe7f4a88eb4
oai_identifier_str oai:sedici.unlp.edu.ar:10915/52888
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Técnicas de clasificación aplicadas al rendimiento académicoHerrera, MyriamLund, María InésRuiz, SusanaTorres, EstelaMallea, AdrianaRomagnano, María GemaCiencias InformáticasClasificaciónrendimiento académicocalidad universitariaEn muchas investigaciones se tiene necesidad de identificar cuáles son las características que diferencian unos grupos de sujetos u objetos respecto de otros, para así poder realizar predicciones. El análisis de conglomerados y el análisis discriminante, son técnicas que algunos autores ubican entre las más potentes para aplicar en investigaciones sociales, permiten clasificar sujetos u objetos a partir de características similares. Estas dos técnicas se pueden diferenciar por la manera de extraer conocimiento útil escondido en esos datos. El Análisis Discriminante cuenta con grupos de datos conocidos, con observaciones de unidades de pertenencia desconocida inicialmente y tiene que ser determinada a través del análisis de los datos. Este tipo de problemas de clasificación es referido como reconocimiento de patrones asistido o aprendizaje supervisado; en terminología estadística cae bajo el título de Análisis Discriminante. Por otro lado, hay problemas de clasificación donde los grupos son desconocidos a priori y el principal propósito del análisis es determinar los grupos a partir de los propios datos, de modo que las unidades dentro del mismo grupo sean, en algún sentido, más similares u homogéneas que aquellas que pertenecen a grupos diferentes. Este tipo de problema de clasificación es referido como reconocimiento de patrón no supervisado o conocimiento sin guía, y, en terminología estadística cae bajo el título de Análisis de Conglomerados. En este proyecto se aplicarán ambas técnicas o una combinación de ellas o una nueva técnica para analizar lo que llamamos rendimiento académico universitario. Se puede afirmar que, en general, un indicador directo de la calidad de la enseñanza es el rendimiento académico, medido a través del nivel alcanzado por los estudiantes. Vista la importancia del tema en este proyecto se determinarán las principales variables que influyen en el rendimiento como así también tipologías básicas de grupos, obtenidos de los alumnos universitarios tanto de la Facultad de Ciencias Exactas como de los alumnos de matemática de la Facultad de Filosofía de la UNSJ.Eje: Bases de Datos y Minería de DatosRed de Universidades con Carreras en Informática (RedUNCI)2016-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf248-252http://sedici.unlp.edu.ar/handle/10915/52888spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-698-377-2info:eu-repo/semantics/reference/hdl/10915/52766info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:04:49Zoai:sedici.unlp.edu.ar:10915/52888Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:04:49.967SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Técnicas de clasificación aplicadas al rendimiento académico
title Técnicas de clasificación aplicadas al rendimiento académico
spellingShingle Técnicas de clasificación aplicadas al rendimiento académico
Herrera, Myriam
Ciencias Informáticas
Clasificación
rendimiento académico
calidad universitaria
title_short Técnicas de clasificación aplicadas al rendimiento académico
title_full Técnicas de clasificación aplicadas al rendimiento académico
title_fullStr Técnicas de clasificación aplicadas al rendimiento académico
title_full_unstemmed Técnicas de clasificación aplicadas al rendimiento académico
title_sort Técnicas de clasificación aplicadas al rendimiento académico
dc.creator.none.fl_str_mv Herrera, Myriam
Lund, María Inés
Ruiz, Susana
Torres, Estela
Mallea, Adriana
Romagnano, María Gema
author Herrera, Myriam
author_facet Herrera, Myriam
Lund, María Inés
Ruiz, Susana
Torres, Estela
Mallea, Adriana
Romagnano, María Gema
author_role author
author2 Lund, María Inés
Ruiz, Susana
Torres, Estela
Mallea, Adriana
Romagnano, María Gema
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Clasificación
rendimiento académico
calidad universitaria
topic Ciencias Informáticas
Clasificación
rendimiento académico
calidad universitaria
dc.description.none.fl_txt_mv En muchas investigaciones se tiene necesidad de identificar cuáles son las características que diferencian unos grupos de sujetos u objetos respecto de otros, para así poder realizar predicciones. El análisis de conglomerados y el análisis discriminante, son técnicas que algunos autores ubican entre las más potentes para aplicar en investigaciones sociales, permiten clasificar sujetos u objetos a partir de características similares. Estas dos técnicas se pueden diferenciar por la manera de extraer conocimiento útil escondido en esos datos. El Análisis Discriminante cuenta con grupos de datos conocidos, con observaciones de unidades de pertenencia desconocida inicialmente y tiene que ser determinada a través del análisis de los datos. Este tipo de problemas de clasificación es referido como reconocimiento de patrones asistido o aprendizaje supervisado; en terminología estadística cae bajo el título de Análisis Discriminante. Por otro lado, hay problemas de clasificación donde los grupos son desconocidos a priori y el principal propósito del análisis es determinar los grupos a partir de los propios datos, de modo que las unidades dentro del mismo grupo sean, en algún sentido, más similares u homogéneas que aquellas que pertenecen a grupos diferentes. Este tipo de problema de clasificación es referido como reconocimiento de patrón no supervisado o conocimiento sin guía, y, en terminología estadística cae bajo el título de Análisis de Conglomerados. En este proyecto se aplicarán ambas técnicas o una combinación de ellas o una nueva técnica para analizar lo que llamamos rendimiento académico universitario. Se puede afirmar que, en general, un indicador directo de la calidad de la enseñanza es el rendimiento académico, medido a través del nivel alcanzado por los estudiantes. Vista la importancia del tema en este proyecto se determinarán las principales variables que influyen en el rendimiento como así también tipologías básicas de grupos, obtenidos de los alumnos universitarios tanto de la Facultad de Ciencias Exactas como de los alumnos de matemática de la Facultad de Filosofía de la UNSJ.
Eje: Bases de Datos y Minería de Datos
Red de Universidades con Carreras en Informática (RedUNCI)
description En muchas investigaciones se tiene necesidad de identificar cuáles son las características que diferencian unos grupos de sujetos u objetos respecto de otros, para así poder realizar predicciones. El análisis de conglomerados y el análisis discriminante, son técnicas que algunos autores ubican entre las más potentes para aplicar en investigaciones sociales, permiten clasificar sujetos u objetos a partir de características similares. Estas dos técnicas se pueden diferenciar por la manera de extraer conocimiento útil escondido en esos datos. El Análisis Discriminante cuenta con grupos de datos conocidos, con observaciones de unidades de pertenencia desconocida inicialmente y tiene que ser determinada a través del análisis de los datos. Este tipo de problemas de clasificación es referido como reconocimiento de patrones asistido o aprendizaje supervisado; en terminología estadística cae bajo el título de Análisis Discriminante. Por otro lado, hay problemas de clasificación donde los grupos son desconocidos a priori y el principal propósito del análisis es determinar los grupos a partir de los propios datos, de modo que las unidades dentro del mismo grupo sean, en algún sentido, más similares u homogéneas que aquellas que pertenecen a grupos diferentes. Este tipo de problema de clasificación es referido como reconocimiento de patrón no supervisado o conocimiento sin guía, y, en terminología estadística cae bajo el título de Análisis de Conglomerados. En este proyecto se aplicarán ambas técnicas o una combinación de ellas o una nueva técnica para analizar lo que llamamos rendimiento académico universitario. Se puede afirmar que, en general, un indicador directo de la calidad de la enseñanza es el rendimiento académico, medido a través del nivel alcanzado por los estudiantes. Vista la importancia del tema en este proyecto se determinarán las principales variables que influyen en el rendimiento como así también tipologías básicas de grupos, obtenidos de los alumnos universitarios tanto de la Facultad de Ciencias Exactas como de los alumnos de matemática de la Facultad de Filosofía de la UNSJ.
publishDate 2016
dc.date.none.fl_str_mv 2016-04
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/52888
url http://sedici.unlp.edu.ar/handle/10915/52888
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-950-698-377-2
info:eu-repo/semantics/reference/hdl/10915/52766
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
248-252
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615917686751232
score 13.070432