Evaluación de técnicas de clasificación para predecir el rendimiento académico de ingresantes a la universidad en temas de matemática
- Autores
- Dieser, María Paula; Cavero, Lorena Verónica; Martín, María Cristina; Schlaps, Erica; Titionik, Diamela; Wagner, Laura
- Año de publicación
- 2017
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- En el proceso de inscripción a las carreras de grado de la Facultad de Ciencias Exactas y Naturales de la Universidad Nacional de La Pampa, y en el desarrollo de las actividades del Programa de Ambientación a la Vida Universitaria de la Institución, se recolectan múltiples datos aportados por los aspirantes a través de los sistemas de gestión. Éstos constituyen una importante fuente de información, en tanto se extraiga conocimiento para el análisis de la realidad de los estudiantes y los contextos en los que ellos aprenden, y para el diseño de eventuales planes de acción. Es una realidad la constante preocupación de la comunidad institucional por los elevados índices de deserción, o retrasos en alcanzar su título de grado, por dificultades en asignaturas vinculadas con la matemática. La línea de investigación presentada propone procesar los datos recolectados a través de los sistemas de gestión durante el ingreso, y resultados del seguimiento de la actividad académica en asignaturas de matemática, para obtener posibles patrones entre los estudiantes que alcancen idénticos logros. Los modelos resultantes permitirán predecir el rendimiento académico en el área y determinar factores que lo afectan para implementar políticas de retención adecuadas.
Eje: Bases de datos y Minería de datos.
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Clasificación
rendimiento académico
Predicción
Minería de Datos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/61656
Ver los metadatos del registro completo
id |
SEDICI_1ac69d1c40d63fcd55a5c8ef14775555 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/61656 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Evaluación de técnicas de clasificación para predecir el rendimiento académico de ingresantes a la universidad en temas de matemáticaDieser, María PaulaCavero, Lorena VerónicaMartín, María CristinaSchlaps, EricaTitionik, DiamelaWagner, LauraCiencias InformáticasClasificaciónrendimiento académicoPredicciónMinería de DatosEn el proceso de inscripción a las carreras de grado de la Facultad de Ciencias Exactas y Naturales de la Universidad Nacional de La Pampa, y en el desarrollo de las actividades del Programa de Ambientación a la Vida Universitaria de la Institución, se recolectan múltiples datos aportados por los aspirantes a través de los sistemas de gestión. Éstos constituyen una importante fuente de información, en tanto se extraiga conocimiento para el análisis de la realidad de los estudiantes y los contextos en los que ellos aprenden, y para el diseño de eventuales planes de acción. Es una realidad la constante preocupación de la comunidad institucional por los elevados índices de deserción, o retrasos en alcanzar su título de grado, por dificultades en asignaturas vinculadas con la matemática. La línea de investigación presentada propone procesar los datos recolectados a través de los sistemas de gestión durante el ingreso, y resultados del seguimiento de la actividad académica en asignaturas de matemática, para obtener posibles patrones entre los estudiantes que alcancen idénticos logros. Los modelos resultantes permitirán predecir el rendimiento académico en el área y determinar factores que lo afectan para implementar políticas de retención adecuadas.Eje: Bases de datos y Minería de datos.Red de Universidades con Carreras en Informática (RedUNCI)2017-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf266-270http://sedici.unlp.edu.ar/handle/10915/61656spainfo:eu-repo/semantics/altIdentifier/isbn/978-987-42-5143-5info:eu-repo/semantics/reference/hdl/10915/61343info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:07:46Zoai:sedici.unlp.edu.ar:10915/61656Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:07:46.926SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Evaluación de técnicas de clasificación para predecir el rendimiento académico de ingresantes a la universidad en temas de matemática |
title |
Evaluación de técnicas de clasificación para predecir el rendimiento académico de ingresantes a la universidad en temas de matemática |
spellingShingle |
Evaluación de técnicas de clasificación para predecir el rendimiento académico de ingresantes a la universidad en temas de matemática Dieser, María Paula Ciencias Informáticas Clasificación rendimiento académico Predicción Minería de Datos |
title_short |
Evaluación de técnicas de clasificación para predecir el rendimiento académico de ingresantes a la universidad en temas de matemática |
title_full |
Evaluación de técnicas de clasificación para predecir el rendimiento académico de ingresantes a la universidad en temas de matemática |
title_fullStr |
Evaluación de técnicas de clasificación para predecir el rendimiento académico de ingresantes a la universidad en temas de matemática |
title_full_unstemmed |
Evaluación de técnicas de clasificación para predecir el rendimiento académico de ingresantes a la universidad en temas de matemática |
title_sort |
Evaluación de técnicas de clasificación para predecir el rendimiento académico de ingresantes a la universidad en temas de matemática |
dc.creator.none.fl_str_mv |
Dieser, María Paula Cavero, Lorena Verónica Martín, María Cristina Schlaps, Erica Titionik, Diamela Wagner, Laura |
author |
Dieser, María Paula |
author_facet |
Dieser, María Paula Cavero, Lorena Verónica Martín, María Cristina Schlaps, Erica Titionik, Diamela Wagner, Laura |
author_role |
author |
author2 |
Cavero, Lorena Verónica Martín, María Cristina Schlaps, Erica Titionik, Diamela Wagner, Laura |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Clasificación rendimiento académico Predicción Minería de Datos |
topic |
Ciencias Informáticas Clasificación rendimiento académico Predicción Minería de Datos |
dc.description.none.fl_txt_mv |
En el proceso de inscripción a las carreras de grado de la Facultad de Ciencias Exactas y Naturales de la Universidad Nacional de La Pampa, y en el desarrollo de las actividades del Programa de Ambientación a la Vida Universitaria de la Institución, se recolectan múltiples datos aportados por los aspirantes a través de los sistemas de gestión. Éstos constituyen una importante fuente de información, en tanto se extraiga conocimiento para el análisis de la realidad de los estudiantes y los contextos en los que ellos aprenden, y para el diseño de eventuales planes de acción. Es una realidad la constante preocupación de la comunidad institucional por los elevados índices de deserción, o retrasos en alcanzar su título de grado, por dificultades en asignaturas vinculadas con la matemática. La línea de investigación presentada propone procesar los datos recolectados a través de los sistemas de gestión durante el ingreso, y resultados del seguimiento de la actividad académica en asignaturas de matemática, para obtener posibles patrones entre los estudiantes que alcancen idénticos logros. Los modelos resultantes permitirán predecir el rendimiento académico en el área y determinar factores que lo afectan para implementar políticas de retención adecuadas. Eje: Bases de datos y Minería de datos. Red de Universidades con Carreras en Informática (RedUNCI) |
description |
En el proceso de inscripción a las carreras de grado de la Facultad de Ciencias Exactas y Naturales de la Universidad Nacional de La Pampa, y en el desarrollo de las actividades del Programa de Ambientación a la Vida Universitaria de la Institución, se recolectan múltiples datos aportados por los aspirantes a través de los sistemas de gestión. Éstos constituyen una importante fuente de información, en tanto se extraiga conocimiento para el análisis de la realidad de los estudiantes y los contextos en los que ellos aprenden, y para el diseño de eventuales planes de acción. Es una realidad la constante preocupación de la comunidad institucional por los elevados índices de deserción, o retrasos en alcanzar su título de grado, por dificultades en asignaturas vinculadas con la matemática. La línea de investigación presentada propone procesar los datos recolectados a través de los sistemas de gestión durante el ingreso, y resultados del seguimiento de la actividad académica en asignaturas de matemática, para obtener posibles patrones entre los estudiantes que alcancen idénticos logros. Los modelos resultantes permitirán predecir el rendimiento académico en el área y determinar factores que lo afectan para implementar políticas de retención adecuadas. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/61656 |
url |
http://sedici.unlp.edu.ar/handle/10915/61656 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-42-5143-5 info:eu-repo/semantics/reference/hdl/10915/61343 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 266-270 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615949784711168 |
score |
13.069144 |