Utilización de índices de vegetación satelitales para predecir niveles de rendimiento de Vicia villosa Roth
- Autores
- Marini, Fabián; D'Amico, María Belén; Calandrini, Guillermo Luis; Renzi, Juan Pablo; Chantre Balacca, Guillermo Ruben
- Año de publicación
- 2025
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- En este trabajo se combinan las imágenes satelitales, los algoritmos de aprendizaje de máquina y las mediciones de campo para analizar si es posible generar un modelo de predicción del rendimiento de la leguminosa Vicia villosa Roth (VV) antes de su cosecha. En un estudio previo, se empleó información satelital de diferentes fechas a lo largo del ciclo fenológico completo de VV cultivada en varios lotes del partido de Guaminí (provincia de Buenos Aires) y se encontró una estrecha relación entre la serie temporal de los índices de vegetación y el rinde de dichos cultivos. En base a esos resultados, se evalúa la posibilidad de predecir el rendimiento a partir de nueve fechas de la campaña 2021-2022 entre la siembra y la cosecha. Las mismas se asocian de distintas maneras determinando su impacto sobre la precisión del modelo entrenado.Los resultados evidencian que con el monitoreo remoto de cinco fechas es posible clasificar adecuadamente el rendimiento de VV. Tener un modelo de predicción ayudaría en las decisiones in-situ optimizando el uso que puede darse al cultivo de VV (pastoreo directo, forraje o producción de semillas) en función del rendimiento esperado.
In this paper, satellite images, machine learning algorithms and field measurements are combined to analyze the possibility of generating a model that predicts the yield of the legume Vicia villosa Roth before harvest. In a previous study, satellite information from different dates throughout the complete phenological cycle of the legume cultivated in several plots of the Guaminí district (Buenos Aires) was used and a close relationship was found between yield level and the time series of vegetation indices. Based on these results, the possibility of predicting yield is evaluated considering nine dates of the 2021-2022 campaign between sowing and prior to harvest. They are associated in different ways, determining their impact on the accuracy of the trained model. Results show that legume yield can be adequately classifed with remote monitoring of five dates. To have a prediction model could help in in-situ decisions by optimizing the use given to the crop (direct grazing, forage or seed production) based on its expected profit.
Fil: Marini, Fabián. Instituto Nacional de Tecnología Agropecuaria; Argentina
Fil: D'Amico, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Calandrini, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Renzi, Juan Pablo. Instituto Nacional de Tecnología Agropecuaria; Argentina
Fil: Chantre Balacca, Guillermo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina - Materia
-
MODELO
PREDICCION
RENDIMIENTO
LEGUMINOSA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/264482
Ver los metadatos del registro completo
id |
CONICETDig_f6920fd39ecf8af23fb404f6dabb2fce |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/264482 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Utilización de índices de vegetación satelitales para predecir niveles de rendimiento de Vicia villosa RothUse of satellite vegetation indices to predict yield levels of Vicia villosa RothMarini, FabiánD'Amico, María BelénCalandrini, Guillermo LuisRenzi, Juan PabloChantre Balacca, Guillermo RubenMODELOPREDICCIONRENDIMIENTOLEGUMINOSAhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4En este trabajo se combinan las imágenes satelitales, los algoritmos de aprendizaje de máquina y las mediciones de campo para analizar si es posible generar un modelo de predicción del rendimiento de la leguminosa Vicia villosa Roth (VV) antes de su cosecha. En un estudio previo, se empleó información satelital de diferentes fechas a lo largo del ciclo fenológico completo de VV cultivada en varios lotes del partido de Guaminí (provincia de Buenos Aires) y se encontró una estrecha relación entre la serie temporal de los índices de vegetación y el rinde de dichos cultivos. En base a esos resultados, se evalúa la posibilidad de predecir el rendimiento a partir de nueve fechas de la campaña 2021-2022 entre la siembra y la cosecha. Las mismas se asocian de distintas maneras determinando su impacto sobre la precisión del modelo entrenado.Los resultados evidencian que con el monitoreo remoto de cinco fechas es posible clasificar adecuadamente el rendimiento de VV. Tener un modelo de predicción ayudaría en las decisiones in-situ optimizando el uso que puede darse al cultivo de VV (pastoreo directo, forraje o producción de semillas) en función del rendimiento esperado.In this paper, satellite images, machine learning algorithms and field measurements are combined to analyze the possibility of generating a model that predicts the yield of the legume Vicia villosa Roth before harvest. In a previous study, satellite information from different dates throughout the complete phenological cycle of the legume cultivated in several plots of the Guaminí district (Buenos Aires) was used and a close relationship was found between yield level and the time series of vegetation indices. Based on these results, the possibility of predicting yield is evaluated considering nine dates of the 2021-2022 campaign between sowing and prior to harvest. They are associated in different ways, determining their impact on the accuracy of the trained model. Results show that legume yield can be adequately classifed with remote monitoring of five dates. To have a prediction model could help in in-situ decisions by optimizing the use given to the crop (direct grazing, forage or seed production) based on its expected profit.Fil: Marini, Fabián. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: D'Amico, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Calandrini, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Renzi, Juan Pablo. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Chantre Balacca, Guillermo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaSociedad Argentina de Informática e Investigación Operativa2025-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/264482Marini, Fabián; D'Amico, María Belén; Calandrini, Guillermo Luis; Renzi, Juan Pablo; Chantre Balacca, Guillermo Ruben; Utilización de índices de vegetación satelitales para predecir niveles de rendimiento de Vicia villosa Roth; Sociedad Argentina de Informática e Investigación Operativa; SADIO Electronic Journal of Informatic and Operation Research; 24; 2; 1-6-2025; 18-321514-6774CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://revistas.unlp.edu.ar/ejs/article/view/18959info:eu-repo/semantics/altIdentifier/doi/10.24215/15146774e076info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:10:35Zoai:ri.conicet.gov.ar:11336/264482instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:10:35.751CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Utilización de índices de vegetación satelitales para predecir niveles de rendimiento de Vicia villosa Roth Use of satellite vegetation indices to predict yield levels of Vicia villosa Roth |
title |
Utilización de índices de vegetación satelitales para predecir niveles de rendimiento de Vicia villosa Roth |
spellingShingle |
Utilización de índices de vegetación satelitales para predecir niveles de rendimiento de Vicia villosa Roth Marini, Fabián MODELO PREDICCION RENDIMIENTO LEGUMINOSA |
title_short |
Utilización de índices de vegetación satelitales para predecir niveles de rendimiento de Vicia villosa Roth |
title_full |
Utilización de índices de vegetación satelitales para predecir niveles de rendimiento de Vicia villosa Roth |
title_fullStr |
Utilización de índices de vegetación satelitales para predecir niveles de rendimiento de Vicia villosa Roth |
title_full_unstemmed |
Utilización de índices de vegetación satelitales para predecir niveles de rendimiento de Vicia villosa Roth |
title_sort |
Utilización de índices de vegetación satelitales para predecir niveles de rendimiento de Vicia villosa Roth |
dc.creator.none.fl_str_mv |
Marini, Fabián D'Amico, María Belén Calandrini, Guillermo Luis Renzi, Juan Pablo Chantre Balacca, Guillermo Ruben |
author |
Marini, Fabián |
author_facet |
Marini, Fabián D'Amico, María Belén Calandrini, Guillermo Luis Renzi, Juan Pablo Chantre Balacca, Guillermo Ruben |
author_role |
author |
author2 |
D'Amico, María Belén Calandrini, Guillermo Luis Renzi, Juan Pablo Chantre Balacca, Guillermo Ruben |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
MODELO PREDICCION RENDIMIENTO LEGUMINOSA |
topic |
MODELO PREDICCION RENDIMIENTO LEGUMINOSA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
En este trabajo se combinan las imágenes satelitales, los algoritmos de aprendizaje de máquina y las mediciones de campo para analizar si es posible generar un modelo de predicción del rendimiento de la leguminosa Vicia villosa Roth (VV) antes de su cosecha. En un estudio previo, se empleó información satelital de diferentes fechas a lo largo del ciclo fenológico completo de VV cultivada en varios lotes del partido de Guaminí (provincia de Buenos Aires) y se encontró una estrecha relación entre la serie temporal de los índices de vegetación y el rinde de dichos cultivos. En base a esos resultados, se evalúa la posibilidad de predecir el rendimiento a partir de nueve fechas de la campaña 2021-2022 entre la siembra y la cosecha. Las mismas se asocian de distintas maneras determinando su impacto sobre la precisión del modelo entrenado.Los resultados evidencian que con el monitoreo remoto de cinco fechas es posible clasificar adecuadamente el rendimiento de VV. Tener un modelo de predicción ayudaría en las decisiones in-situ optimizando el uso que puede darse al cultivo de VV (pastoreo directo, forraje o producción de semillas) en función del rendimiento esperado. In this paper, satellite images, machine learning algorithms and field measurements are combined to analyze the possibility of generating a model that predicts the yield of the legume Vicia villosa Roth before harvest. In a previous study, satellite information from different dates throughout the complete phenological cycle of the legume cultivated in several plots of the Guaminí district (Buenos Aires) was used and a close relationship was found between yield level and the time series of vegetation indices. Based on these results, the possibility of predicting yield is evaluated considering nine dates of the 2021-2022 campaign between sowing and prior to harvest. They are associated in different ways, determining their impact on the accuracy of the trained model. Results show that legume yield can be adequately classifed with remote monitoring of five dates. To have a prediction model could help in in-situ decisions by optimizing the use given to the crop (direct grazing, forage or seed production) based on its expected profit. Fil: Marini, Fabián. Instituto Nacional de Tecnología Agropecuaria; Argentina Fil: D'Amico, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina Fil: Calandrini, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina Fil: Renzi, Juan Pablo. Instituto Nacional de Tecnología Agropecuaria; Argentina Fil: Chantre Balacca, Guillermo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina |
description |
En este trabajo se combinan las imágenes satelitales, los algoritmos de aprendizaje de máquina y las mediciones de campo para analizar si es posible generar un modelo de predicción del rendimiento de la leguminosa Vicia villosa Roth (VV) antes de su cosecha. En un estudio previo, se empleó información satelital de diferentes fechas a lo largo del ciclo fenológico completo de VV cultivada en varios lotes del partido de Guaminí (provincia de Buenos Aires) y se encontró una estrecha relación entre la serie temporal de los índices de vegetación y el rinde de dichos cultivos. En base a esos resultados, se evalúa la posibilidad de predecir el rendimiento a partir de nueve fechas de la campaña 2021-2022 entre la siembra y la cosecha. Las mismas se asocian de distintas maneras determinando su impacto sobre la precisión del modelo entrenado.Los resultados evidencian que con el monitoreo remoto de cinco fechas es posible clasificar adecuadamente el rendimiento de VV. Tener un modelo de predicción ayudaría en las decisiones in-situ optimizando el uso que puede darse al cultivo de VV (pastoreo directo, forraje o producción de semillas) en función del rendimiento esperado. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-06-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/264482 Marini, Fabián; D'Amico, María Belén; Calandrini, Guillermo Luis; Renzi, Juan Pablo; Chantre Balacca, Guillermo Ruben; Utilización de índices de vegetación satelitales para predecir niveles de rendimiento de Vicia villosa Roth; Sociedad Argentina de Informática e Investigación Operativa; SADIO Electronic Journal of Informatic and Operation Research; 24; 2; 1-6-2025; 18-32 1514-6774 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/264482 |
identifier_str_mv |
Marini, Fabián; D'Amico, María Belén; Calandrini, Guillermo Luis; Renzi, Juan Pablo; Chantre Balacca, Guillermo Ruben; Utilización de índices de vegetación satelitales para predecir niveles de rendimiento de Vicia villosa Roth; Sociedad Argentina de Informática e Investigación Operativa; SADIO Electronic Journal of Informatic and Operation Research; 24; 2; 1-6-2025; 18-32 1514-6774 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://revistas.unlp.edu.ar/ejs/article/view/18959 info:eu-repo/semantics/altIdentifier/doi/10.24215/15146774e076 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Sociedad Argentina de Informática e Investigación Operativa |
publisher.none.fl_str_mv |
Sociedad Argentina de Informática e Investigación Operativa |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980534511206400 |
score |
12.993085 |