Volterra integral equations and some nonlinear integral equations with variable limit of integration as generalized moment problems
- Autores
- Pintarelli, María Beatriz
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution. Specifically you will see that solving the Volterra integral equation of first kind ()=() +∫ tₐ (,)() ≤ ≤ or solve the Volterra integral equation of the second kind ()=() +∫t ₐ (,)() ≤ ≤ is equivalent to solving a generalized moment problem of the form =∫bₐ ()() =0,1,2,…. This shall apply for to find the solution of an integrodifferential equation of the form ′()=()++∫tₐ (,)() ≤ ≤ and ()=ₒ. Also considering the nonlinear integral equation: ()=∫ xₐ(−)() . This integral equation is transformed a two-dimensional generalized moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the techniques of generalized moment problem.
Facultad de Ciencias Exactas
Grupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería - Materia
-
Matemática
Generalized moment problems
Solution stability
Volterra integral equations
Nonlinear integral equations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/127465
Ver los metadatos del registro completo
id |
SEDICI_15979de1c2f1f9b742e3033473015220 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/127465 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Volterra integral equations and some nonlinear integral equations with variable limit of integration as generalized moment problemsPintarelli, María BeatrizMatemáticaGeneralized moment problemsSolution stabilityVolterra integral equationsNonlinear integral equationsIn this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution. Specifically you will see that solving the Volterra integral equation of first kind ()=() +∫ tₐ (,)() ≤ ≤ or solve the Volterra integral equation of the second kind ()=() +∫t ₐ (,)() ≤ ≤ is equivalent to solving a generalized moment problem of the form =∫bₐ ()() =0,1,2,…. This shall apply for to find the solution of an integrodifferential equation of the form ′()=()++∫tₐ (,)() ≤ ≤ and ()=ₒ. Also considering the nonlinear integral equation: ()=∫ xₐ(−)() . This integral equation is transformed a two-dimensional generalized moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the techniques of generalized moment problem.Facultad de Ciencias ExactasGrupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf33-39http://sedici.unlp.edu.ar/handle/10915/127465enginfo:eu-repo/semantics/altIdentifier/issn/2159-5291info:eu-repo/semantics/altIdentifier/issn/2159-5291info:eu-repo/semantics/altIdentifier/doi/10.17265/2159-5291/2015.01.004info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:02:53Zoai:sedici.unlp.edu.ar:10915/127465Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:02:53.706SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Volterra integral equations and some nonlinear integral equations with variable limit of integration as generalized moment problems |
title |
Volterra integral equations and some nonlinear integral equations with variable limit of integration as generalized moment problems |
spellingShingle |
Volterra integral equations and some nonlinear integral equations with variable limit of integration as generalized moment problems Pintarelli, María Beatriz Matemática Generalized moment problems Solution stability Volterra integral equations Nonlinear integral equations |
title_short |
Volterra integral equations and some nonlinear integral equations with variable limit of integration as generalized moment problems |
title_full |
Volterra integral equations and some nonlinear integral equations with variable limit of integration as generalized moment problems |
title_fullStr |
Volterra integral equations and some nonlinear integral equations with variable limit of integration as generalized moment problems |
title_full_unstemmed |
Volterra integral equations and some nonlinear integral equations with variable limit of integration as generalized moment problems |
title_sort |
Volterra integral equations and some nonlinear integral equations with variable limit of integration as generalized moment problems |
dc.creator.none.fl_str_mv |
Pintarelli, María Beatriz |
author |
Pintarelli, María Beatriz |
author_facet |
Pintarelli, María Beatriz |
author_role |
author |
dc.subject.none.fl_str_mv |
Matemática Generalized moment problems Solution stability Volterra integral equations Nonlinear integral equations |
topic |
Matemática Generalized moment problems Solution stability Volterra integral equations Nonlinear integral equations |
dc.description.none.fl_txt_mv |
In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution. Specifically you will see that solving the Volterra integral equation of first kind ()=() +∫ tₐ (,)() ≤ ≤ or solve the Volterra integral equation of the second kind ()=() +∫t ₐ (,)() ≤ ≤ is equivalent to solving a generalized moment problem of the form =∫bₐ ()() =0,1,2,…. This shall apply for to find the solution of an integrodifferential equation of the form ′()=()++∫tₐ (,)() ≤ ≤ and ()=ₒ. Also considering the nonlinear integral equation: ()=∫ xₐ(−)() . This integral equation is transformed a two-dimensional generalized moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the techniques of generalized moment problem. Facultad de Ciencias Exactas Grupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería |
description |
In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution. Specifically you will see that solving the Volterra integral equation of first kind ()=() +∫ tₐ (,)() ≤ ≤ or solve the Volterra integral equation of the second kind ()=() +∫t ₐ (,)() ≤ ≤ is equivalent to solving a generalized moment problem of the form =∫bₐ ()() =0,1,2,…. This shall apply for to find the solution of an integrodifferential equation of the form ′()=()++∫tₐ (,)() ≤ ≤ and ()=ₒ. Also considering the nonlinear integral equation: ()=∫ xₐ(−)() . This integral equation is transformed a two-dimensional generalized moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the techniques of generalized moment problem. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/127465 |
url |
http://sedici.unlp.edu.ar/handle/10915/127465 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2159-5291 info:eu-repo/semantics/altIdentifier/issn/2159-5291 info:eu-repo/semantics/altIdentifier/doi/10.17265/2159-5291/2015.01.004 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.format.none.fl_str_mv |
application/pdf 33-39 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260527150006272 |
score |
13.13397 |