Volterra integral equations and some nonlinear integral equations with variable limit of integration as generalized moment problems

Autores
Pintarelli, María Beatriz
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution. Specifically you will see that solving the Volterra integral equation of first kind ()=() +∫ tₐ (,)() ≤ ≤ or solve the Volterra integral equation of the second kind ()=() +∫t ₐ (,)() ≤ ≤ is equivalent to solving a generalized moment problem of the form =∫bₐ ()() =0,1,2,…. This shall apply for to find the solution of an integrodifferential equation of the form ′()=()++∫tₐ (,)() ≤ ≤ and ()=ₒ. Also considering the nonlinear integral equation: ()=∫ xₐ(−)() . This integral equation is transformed a two-dimensional generalized moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the techniques of generalized moment problem.
Facultad de Ciencias Exactas
Grupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería
Materia
Matemática
Generalized moment problems
Solution stability
Volterra integral equations
Nonlinear integral equations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/127465

id SEDICI_15979de1c2f1f9b742e3033473015220
oai_identifier_str oai:sedici.unlp.edu.ar:10915/127465
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Volterra integral equations and some nonlinear integral equations with variable limit of integration as generalized moment problemsPintarelli, María BeatrizMatemáticaGeneralized moment problemsSolution stabilityVolterra integral equationsNonlinear integral equationsIn this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution. Specifically you will see that solving the Volterra integral equation of first kind ()=() +∫ tₐ (,)() ≤ ≤ or solve the Volterra integral equation of the second kind ()=() +∫t ₐ (,)() ≤ ≤ is equivalent to solving a generalized moment problem of the form =∫bₐ ()() =0,1,2,…. This shall apply for to find the solution of an integrodifferential equation of the form ′()=()++∫tₐ (,)() ≤ ≤ and ()=ₒ. Also considering the nonlinear integral equation: ()=∫ xₐ(−)() . This integral equation is transformed a two-dimensional generalized moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the techniques of generalized moment problem.Facultad de Ciencias ExactasGrupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf33-39http://sedici.unlp.edu.ar/handle/10915/127465enginfo:eu-repo/semantics/altIdentifier/issn/2159-5291info:eu-repo/semantics/altIdentifier/issn/2159-5291info:eu-repo/semantics/altIdentifier/doi/10.17265/2159-5291/2015.01.004info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:02:53Zoai:sedici.unlp.edu.ar:10915/127465Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:02:53.706SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Volterra integral equations and some nonlinear integral equations with variable limit of integration as generalized moment problems
title Volterra integral equations and some nonlinear integral equations with variable limit of integration as generalized moment problems
spellingShingle Volterra integral equations and some nonlinear integral equations with variable limit of integration as generalized moment problems
Pintarelli, María Beatriz
Matemática
Generalized moment problems
Solution stability
Volterra integral equations
Nonlinear integral equations
title_short Volterra integral equations and some nonlinear integral equations with variable limit of integration as generalized moment problems
title_full Volterra integral equations and some nonlinear integral equations with variable limit of integration as generalized moment problems
title_fullStr Volterra integral equations and some nonlinear integral equations with variable limit of integration as generalized moment problems
title_full_unstemmed Volterra integral equations and some nonlinear integral equations with variable limit of integration as generalized moment problems
title_sort Volterra integral equations and some nonlinear integral equations with variable limit of integration as generalized moment problems
dc.creator.none.fl_str_mv Pintarelli, María Beatriz
author Pintarelli, María Beatriz
author_facet Pintarelli, María Beatriz
author_role author
dc.subject.none.fl_str_mv Matemática
Generalized moment problems
Solution stability
Volterra integral equations
Nonlinear integral equations
topic Matemática
Generalized moment problems
Solution stability
Volterra integral equations
Nonlinear integral equations
dc.description.none.fl_txt_mv In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution. Specifically you will see that solving the Volterra integral equation of first kind ()=() +∫ tₐ (,)() ≤ ≤ or solve the Volterra integral equation of the second kind ()=() +∫t ₐ (,)() ≤ ≤ is equivalent to solving a generalized moment problem of the form =∫bₐ ()() =0,1,2,…. This shall apply for to find the solution of an integrodifferential equation of the form ′()=()++∫tₐ (,)() ≤ ≤ and ()=ₒ. Also considering the nonlinear integral equation: ()=∫ xₐ(−)() . This integral equation is transformed a two-dimensional generalized moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the techniques of generalized moment problem.
Facultad de Ciencias Exactas
Grupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería
description In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution. Specifically you will see that solving the Volterra integral equation of first kind ()=() +∫ tₐ (,)() ≤ ≤ or solve the Volterra integral equation of the second kind ()=() +∫t ₐ (,)() ≤ ≤ is equivalent to solving a generalized moment problem of the form =∫bₐ ()() =0,1,2,…. This shall apply for to find the solution of an integrodifferential equation of the form ′()=()++∫tₐ (,)() ≤ ≤ and ()=ₒ. Also considering the nonlinear integral equation: ()=∫ xₐ(−)() . This integral equation is transformed a two-dimensional generalized moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the techniques of generalized moment problem.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/127465
url http://sedici.unlp.edu.ar/handle/10915/127465
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2159-5291
info:eu-repo/semantics/altIdentifier/issn/2159-5291
info:eu-repo/semantics/altIdentifier/doi/10.17265/2159-5291/2015.01.004
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.format.none.fl_str_mv application/pdf
33-39
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260527150006272
score 13.13397