Parabolic Partial Differential Equations as Inverse Moments Problem

Autores
Pintarelli, María Beatriz
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We considerer parabolic partial differential equations wt − (wx)x = r (x,t) under the conditions wx (a1, t) = k1 (t) wx (b1, t) = k2 (t) w (x, a2) = h1 (t) w (x, b2) = h2 (t) on a region E = (a1, b1) (a2, b2). We will see that we can write the equation in partial derivatives as an Fredholm integral equation of first kind and will solve this latter with the techniques of inverse moments problem. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on moments problem. Also we consider the one-dimensional one-phase inverse Stefan problem.
Grupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería (GAMEFI)
Facultad de Ciencias Exactas
Materia
Matemática
Parabolic PDEs
Freholm Integral Equations
Generalized Moment Problem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/79327

id SEDICI_1b8b16253f608a644cfc930cb61a710f
oai_identifier_str oai:sedici.unlp.edu.ar:10915/79327
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Parabolic Partial Differential Equations as Inverse Moments ProblemPintarelli, María BeatrizMatemáticaParabolic PDEsFreholm Integral EquationsGeneralized Moment ProblemWe considerer parabolic partial differential equations w<SUB>t</SUB> − (w<SUB>x</SUB>)<SUB>x</SUB> = r (x,t) under the conditions w<SUB>x</SUB> (a<SUB>1</SUB>, t) = k<SUB>1</SUB> (t) w<SUB>x</SUB> (b<SUB>1</SUB>, t) = k<SUB>2</SUB> (t) w (x, a<SUB>2</SUB>) = h<SUB>1</SUB> (t) w (x, b<SUB>2</SUB>) = h<SUB>2</SUB> (t) on a region E = (a<SUB>1</SUB>, b<SUB>1</SUB>) (a<SUB>2</SUB>, b<SUB>2</SUB>). We will see that we can write the equation in partial derivatives as an Fredholm integral equation of first kind and will solve this latter with the techniques of inverse moments problem. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on moments problem. Also we consider the one-dimensional one-phase inverse Stefan problem.Grupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería (GAMEFI)Facultad de Ciencias Exactas2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf77-90http://sedici.unlp.edu.ar/handle/10915/79327enginfo:eu-repo/semantics/altIdentifier/issn/2152-7393info:eu-repo/semantics/altIdentifier/doi/10.4236/am.2016.71007info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:14:27Zoai:sedici.unlp.edu.ar:10915/79327Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:14:27.786SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Parabolic Partial Differential Equations as Inverse Moments Problem
title Parabolic Partial Differential Equations as Inverse Moments Problem
spellingShingle Parabolic Partial Differential Equations as Inverse Moments Problem
Pintarelli, María Beatriz
Matemática
Parabolic PDEs
Freholm Integral Equations
Generalized Moment Problem
title_short Parabolic Partial Differential Equations as Inverse Moments Problem
title_full Parabolic Partial Differential Equations as Inverse Moments Problem
title_fullStr Parabolic Partial Differential Equations as Inverse Moments Problem
title_full_unstemmed Parabolic Partial Differential Equations as Inverse Moments Problem
title_sort Parabolic Partial Differential Equations as Inverse Moments Problem
dc.creator.none.fl_str_mv Pintarelli, María Beatriz
author Pintarelli, María Beatriz
author_facet Pintarelli, María Beatriz
author_role author
dc.subject.none.fl_str_mv Matemática
Parabolic PDEs
Freholm Integral Equations
Generalized Moment Problem
topic Matemática
Parabolic PDEs
Freholm Integral Equations
Generalized Moment Problem
dc.description.none.fl_txt_mv We considerer parabolic partial differential equations w<SUB>t</SUB> − (w<SUB>x</SUB>)<SUB>x</SUB> = r (x,t) under the conditions w<SUB>x</SUB> (a<SUB>1</SUB>, t) = k<SUB>1</SUB> (t) w<SUB>x</SUB> (b<SUB>1</SUB>, t) = k<SUB>2</SUB> (t) w (x, a<SUB>2</SUB>) = h<SUB>1</SUB> (t) w (x, b<SUB>2</SUB>) = h<SUB>2</SUB> (t) on a region E = (a<SUB>1</SUB>, b<SUB>1</SUB>) (a<SUB>2</SUB>, b<SUB>2</SUB>). We will see that we can write the equation in partial derivatives as an Fredholm integral equation of first kind and will solve this latter with the techniques of inverse moments problem. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on moments problem. Also we consider the one-dimensional one-phase inverse Stefan problem.
Grupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería (GAMEFI)
Facultad de Ciencias Exactas
description We considerer parabolic partial differential equations w<SUB>t</SUB> − (w<SUB>x</SUB>)<SUB>x</SUB> = r (x,t) under the conditions w<SUB>x</SUB> (a<SUB>1</SUB>, t) = k<SUB>1</SUB> (t) w<SUB>x</SUB> (b<SUB>1</SUB>, t) = k<SUB>2</SUB> (t) w (x, a<SUB>2</SUB>) = h<SUB>1</SUB> (t) w (x, b<SUB>2</SUB>) = h<SUB>2</SUB> (t) on a region E = (a<SUB>1</SUB>, b<SUB>1</SUB>) (a<SUB>2</SUB>, b<SUB>2</SUB>). We will see that we can write the equation in partial derivatives as an Fredholm integral equation of first kind and will solve this latter with the techniques of inverse moments problem. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on moments problem. Also we consider the one-dimensional one-phase inverse Stefan problem.
publishDate 2016
dc.date.none.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/79327
url http://sedici.unlp.edu.ar/handle/10915/79327
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2152-7393
info:eu-repo/semantics/altIdentifier/doi/10.4236/am.2016.71007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
77-90
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616015708684288
score 13.070432