Parabolic Partial Differential Equations as Inverse Moments Problem
- Autores
- Pintarelli, María Beatriz
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We considerer parabolic partial differential equations wt − (wx)x = r (x,t) under the conditions wx (a1, t) = k1 (t) wx (b1, t) = k2 (t) w (x, a2) = h1 (t) w (x, b2) = h2 (t) on a region E = (a1, b1) (a2, b2). We will see that we can write the equation in partial derivatives as an Fredholm integral equation of first kind and will solve this latter with the techniques of inverse moments problem. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on moments problem. Also we consider the one-dimensional one-phase inverse Stefan problem.
Grupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería (GAMEFI)
Facultad de Ciencias Exactas - Materia
-
Matemática
Parabolic PDEs
Freholm Integral Equations
Generalized Moment Problem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/79327
Ver los metadatos del registro completo
id |
SEDICI_1b8b16253f608a644cfc930cb61a710f |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/79327 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Parabolic Partial Differential Equations as Inverse Moments ProblemPintarelli, María BeatrizMatemáticaParabolic PDEsFreholm Integral EquationsGeneralized Moment ProblemWe considerer parabolic partial differential equations w<SUB>t</SUB> − (w<SUB>x</SUB>)<SUB>x</SUB> = r (x,t) under the conditions w<SUB>x</SUB> (a<SUB>1</SUB>, t) = k<SUB>1</SUB> (t) w<SUB>x</SUB> (b<SUB>1</SUB>, t) = k<SUB>2</SUB> (t) w (x, a<SUB>2</SUB>) = h<SUB>1</SUB> (t) w (x, b<SUB>2</SUB>) = h<SUB>2</SUB> (t) on a region E = (a<SUB>1</SUB>, b<SUB>1</SUB>) (a<SUB>2</SUB>, b<SUB>2</SUB>). We will see that we can write the equation in partial derivatives as an Fredholm integral equation of first kind and will solve this latter with the techniques of inverse moments problem. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on moments problem. Also we consider the one-dimensional one-phase inverse Stefan problem.Grupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería (GAMEFI)Facultad de Ciencias Exactas2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf77-90http://sedici.unlp.edu.ar/handle/10915/79327enginfo:eu-repo/semantics/altIdentifier/issn/2152-7393info:eu-repo/semantics/altIdentifier/doi/10.4236/am.2016.71007info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:14:27Zoai:sedici.unlp.edu.ar:10915/79327Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:14:27.786SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Parabolic Partial Differential Equations as Inverse Moments Problem |
title |
Parabolic Partial Differential Equations as Inverse Moments Problem |
spellingShingle |
Parabolic Partial Differential Equations as Inverse Moments Problem Pintarelli, María Beatriz Matemática Parabolic PDEs Freholm Integral Equations Generalized Moment Problem |
title_short |
Parabolic Partial Differential Equations as Inverse Moments Problem |
title_full |
Parabolic Partial Differential Equations as Inverse Moments Problem |
title_fullStr |
Parabolic Partial Differential Equations as Inverse Moments Problem |
title_full_unstemmed |
Parabolic Partial Differential Equations as Inverse Moments Problem |
title_sort |
Parabolic Partial Differential Equations as Inverse Moments Problem |
dc.creator.none.fl_str_mv |
Pintarelli, María Beatriz |
author |
Pintarelli, María Beatriz |
author_facet |
Pintarelli, María Beatriz |
author_role |
author |
dc.subject.none.fl_str_mv |
Matemática Parabolic PDEs Freholm Integral Equations Generalized Moment Problem |
topic |
Matemática Parabolic PDEs Freholm Integral Equations Generalized Moment Problem |
dc.description.none.fl_txt_mv |
We considerer parabolic partial differential equations w<SUB>t</SUB> − (w<SUB>x</SUB>)<SUB>x</SUB> = r (x,t) under the conditions w<SUB>x</SUB> (a<SUB>1</SUB>, t) = k<SUB>1</SUB> (t) w<SUB>x</SUB> (b<SUB>1</SUB>, t) = k<SUB>2</SUB> (t) w (x, a<SUB>2</SUB>) = h<SUB>1</SUB> (t) w (x, b<SUB>2</SUB>) = h<SUB>2</SUB> (t) on a region E = (a<SUB>1</SUB>, b<SUB>1</SUB>) (a<SUB>2</SUB>, b<SUB>2</SUB>). We will see that we can write the equation in partial derivatives as an Fredholm integral equation of first kind and will solve this latter with the techniques of inverse moments problem. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on moments problem. Also we consider the one-dimensional one-phase inverse Stefan problem. Grupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería (GAMEFI) Facultad de Ciencias Exactas |
description |
We considerer parabolic partial differential equations w<SUB>t</SUB> − (w<SUB>x</SUB>)<SUB>x</SUB> = r (x,t) under the conditions w<SUB>x</SUB> (a<SUB>1</SUB>, t) = k<SUB>1</SUB> (t) w<SUB>x</SUB> (b<SUB>1</SUB>, t) = k<SUB>2</SUB> (t) w (x, a<SUB>2</SUB>) = h<SUB>1</SUB> (t) w (x, b<SUB>2</SUB>) = h<SUB>2</SUB> (t) on a region E = (a<SUB>1</SUB>, b<SUB>1</SUB>) (a<SUB>2</SUB>, b<SUB>2</SUB>). We will see that we can write the equation in partial derivatives as an Fredholm integral equation of first kind and will solve this latter with the techniques of inverse moments problem. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on moments problem. Also we consider the one-dimensional one-phase inverse Stefan problem. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/79327 |
url |
http://sedici.unlp.edu.ar/handle/10915/79327 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2152-7393 info:eu-repo/semantics/altIdentifier/doi/10.4236/am.2016.71007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 77-90 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616015708684288 |
score |
13.070432 |