Klein-Gordon equation as a bi-dimensional moment problem
- Autores
- Pintarelli, María Beatriz; Vericat, Fernando
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider the solution of one-dimensional linear and nonlinear Klein-Gordon equations by first transforming them into bi-dimensional integral equations which are then handled as bi-dimensional moment problems. The integral equations are obtained by either Laplace transforming the linear PDE or by using Green identity for the linear as well as the nonlinear cases. The discretization of the so obtained integral equations results, for the linear and nonlinear problems, respectively, into a bi-dimensional Hausdorff problem and into a generalized moment problem (in which the kernel set { }nm n m x y has been replaced by sets { ( )} m m g x, y of more general linearly independent functions). In both cases, the corresponding inverse problem is numerically solved by approximating the associated finite moment problem by a truncated expansion.
Fil: Pintarelli, María Beatriz. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Vericat, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina - Materia
-
Linear and nonlinear Klein-Gordon equations
Integral equations
Hausdorff moment problem
Generalized moment problem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/272425
Ver los metadatos del registro completo
id |
CONICETDig_32d767f0d142f74fe3cc6be5acab60a9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/272425 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Klein-Gordon equation as a bi-dimensional moment problemPintarelli, María BeatrizVericat, FernandoLinear and nonlinear Klein-Gordon equationsIntegral equationsHausdorff moment problemGeneralized moment problemhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider the solution of one-dimensional linear and nonlinear Klein-Gordon equations by first transforming them into bi-dimensional integral equations which are then handled as bi-dimensional moment problems. The integral equations are obtained by either Laplace transforming the linear PDE or by using Green identity for the linear as well as the nonlinear cases. The discretization of the so obtained integral equations results, for the linear and nonlinear problems, respectively, into a bi-dimensional Hausdorff problem and into a generalized moment problem (in which the kernel set { }nm n m x y has been replaced by sets { ( )} m m g x, y of more general linearly independent functions). In both cases, the corresponding inverse problem is numerically solved by approximating the associated finite moment problem by a truncated expansion.Fil: Pintarelli, María Beatriz. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Vericat, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaPushpa Publishing House2012-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/272425Pintarelli, María Beatriz; Vericat, Fernando; Klein-Gordon equation as a bi-dimensional moment problem; Pushpa Publishing House; Far East Journal Of Mathematical Sciences : Fjms; 70; 2; 10-2012; 201-2250972-0871CONICET DigitalCONICETenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:58:17Zoai:ri.conicet.gov.ar:11336/272425instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:58:18.078CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Klein-Gordon equation as a bi-dimensional moment problem |
title |
Klein-Gordon equation as a bi-dimensional moment problem |
spellingShingle |
Klein-Gordon equation as a bi-dimensional moment problem Pintarelli, María Beatriz Linear and nonlinear Klein-Gordon equations Integral equations Hausdorff moment problem Generalized moment problem |
title_short |
Klein-Gordon equation as a bi-dimensional moment problem |
title_full |
Klein-Gordon equation as a bi-dimensional moment problem |
title_fullStr |
Klein-Gordon equation as a bi-dimensional moment problem |
title_full_unstemmed |
Klein-Gordon equation as a bi-dimensional moment problem |
title_sort |
Klein-Gordon equation as a bi-dimensional moment problem |
dc.creator.none.fl_str_mv |
Pintarelli, María Beatriz Vericat, Fernando |
author |
Pintarelli, María Beatriz |
author_facet |
Pintarelli, María Beatriz Vericat, Fernando |
author_role |
author |
author2 |
Vericat, Fernando |
author2_role |
author |
dc.subject.none.fl_str_mv |
Linear and nonlinear Klein-Gordon equations Integral equations Hausdorff moment problem Generalized moment problem |
topic |
Linear and nonlinear Klein-Gordon equations Integral equations Hausdorff moment problem Generalized moment problem |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider the solution of one-dimensional linear and nonlinear Klein-Gordon equations by first transforming them into bi-dimensional integral equations which are then handled as bi-dimensional moment problems. The integral equations are obtained by either Laplace transforming the linear PDE or by using Green identity for the linear as well as the nonlinear cases. The discretization of the so obtained integral equations results, for the linear and nonlinear problems, respectively, into a bi-dimensional Hausdorff problem and into a generalized moment problem (in which the kernel set { }nm n m x y has been replaced by sets { ( )} m m g x, y of more general linearly independent functions). In both cases, the corresponding inverse problem is numerically solved by approximating the associated finite moment problem by a truncated expansion. Fil: Pintarelli, María Beatriz. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Vericat, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina |
description |
We consider the solution of one-dimensional linear and nonlinear Klein-Gordon equations by first transforming them into bi-dimensional integral equations which are then handled as bi-dimensional moment problems. The integral equations are obtained by either Laplace transforming the linear PDE or by using Green identity for the linear as well as the nonlinear cases. The discretization of the so obtained integral equations results, for the linear and nonlinear problems, respectively, into a bi-dimensional Hausdorff problem and into a generalized moment problem (in which the kernel set { }nm n m x y has been replaced by sets { ( )} m m g x, y of more general linearly independent functions). In both cases, the corresponding inverse problem is numerically solved by approximating the associated finite moment problem by a truncated expansion. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/272425 Pintarelli, María Beatriz; Vericat, Fernando; Klein-Gordon equation as a bi-dimensional moment problem; Pushpa Publishing House; Far East Journal Of Mathematical Sciences : Fjms; 70; 2; 10-2012; 201-225 0972-0871 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/272425 |
identifier_str_mv |
Pintarelli, María Beatriz; Vericat, Fernando; Klein-Gordon equation as a bi-dimensional moment problem; Pushpa Publishing House; Far East Journal Of Mathematical Sciences : Fjms; 70; 2; 10-2012; 201-225 0972-0871 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pushpa Publishing House |
publisher.none.fl_str_mv |
Pushpa Publishing House |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083122730369024 |
score |
13.22299 |