Klein-Gordon equation as a bi-dimensional moment problem

Autores
Pintarelli, María Beatriz; Vericat, Fernando
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider the solution of one-dimensional linear and nonlinear Klein-Gordon equations by first transforming them into bi-dimensional integral equations which are then handled as bi-dimensional moment problems. The integral equations are obtained by either Laplace transforming the linear PDE or by using Green identity for the linear as well as the nonlinear cases. The discretization of the so obtained integral equations results, for the linear and nonlinear problems, respectively, into a bi-dimensional Hausdorff problem and into a generalized moment problem (in which the kernel set { }nm n m x y has been replaced by sets { ( )} m m g x, y of more general linearly independent functions). In both cases, the corresponding inverse problem is numerically solved by approximating the associated finite moment problem by a truncated expansion.
Fil: Pintarelli, María Beatriz. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Vericat, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Materia
Linear and nonlinear Klein-Gordon equations
Integral equations
Hausdorff moment problem
Generalized moment problem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/272425

id CONICETDig_32d767f0d142f74fe3cc6be5acab60a9
oai_identifier_str oai:ri.conicet.gov.ar:11336/272425
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Klein-Gordon equation as a bi-dimensional moment problemPintarelli, María BeatrizVericat, FernandoLinear and nonlinear Klein-Gordon equationsIntegral equationsHausdorff moment problemGeneralized moment problemhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider the solution of one-dimensional linear and nonlinear Klein-Gordon equations by first transforming them into bi-dimensional integral equations which are then handled as bi-dimensional moment problems. The integral equations are obtained by either Laplace transforming the linear PDE or by using Green identity for the linear as well as the nonlinear cases. The discretization of the so obtained integral equations results, for the linear and nonlinear problems, respectively, into a bi-dimensional Hausdorff problem and into a generalized moment problem (in which the kernel set { }nm n m x y has been replaced by sets { ( )} m m g x, y of more general linearly independent functions). In both cases, the corresponding inverse problem is numerically solved by approximating the associated finite moment problem by a truncated expansion.Fil: Pintarelli, María Beatriz. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Vericat, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaPushpa Publishing House2012-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/272425Pintarelli, María Beatriz; Vericat, Fernando; Klein-Gordon equation as a bi-dimensional moment problem; Pushpa Publishing House; Far East Journal Of Mathematical Sciences : Fjms; 70; 2; 10-2012; 201-2250972-0871CONICET DigitalCONICETenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:58:17Zoai:ri.conicet.gov.ar:11336/272425instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:58:18.078CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Klein-Gordon equation as a bi-dimensional moment problem
title Klein-Gordon equation as a bi-dimensional moment problem
spellingShingle Klein-Gordon equation as a bi-dimensional moment problem
Pintarelli, María Beatriz
Linear and nonlinear Klein-Gordon equations
Integral equations
Hausdorff moment problem
Generalized moment problem
title_short Klein-Gordon equation as a bi-dimensional moment problem
title_full Klein-Gordon equation as a bi-dimensional moment problem
title_fullStr Klein-Gordon equation as a bi-dimensional moment problem
title_full_unstemmed Klein-Gordon equation as a bi-dimensional moment problem
title_sort Klein-Gordon equation as a bi-dimensional moment problem
dc.creator.none.fl_str_mv Pintarelli, María Beatriz
Vericat, Fernando
author Pintarelli, María Beatriz
author_facet Pintarelli, María Beatriz
Vericat, Fernando
author_role author
author2 Vericat, Fernando
author2_role author
dc.subject.none.fl_str_mv Linear and nonlinear Klein-Gordon equations
Integral equations
Hausdorff moment problem
Generalized moment problem
topic Linear and nonlinear Klein-Gordon equations
Integral equations
Hausdorff moment problem
Generalized moment problem
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider the solution of one-dimensional linear and nonlinear Klein-Gordon equations by first transforming them into bi-dimensional integral equations which are then handled as bi-dimensional moment problems. The integral equations are obtained by either Laplace transforming the linear PDE or by using Green identity for the linear as well as the nonlinear cases. The discretization of the so obtained integral equations results, for the linear and nonlinear problems, respectively, into a bi-dimensional Hausdorff problem and into a generalized moment problem (in which the kernel set { }nm n m x y has been replaced by sets { ( )} m m g x, y of more general linearly independent functions). In both cases, the corresponding inverse problem is numerically solved by approximating the associated finite moment problem by a truncated expansion.
Fil: Pintarelli, María Beatriz. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Vericat, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
description We consider the solution of one-dimensional linear and nonlinear Klein-Gordon equations by first transforming them into bi-dimensional integral equations which are then handled as bi-dimensional moment problems. The integral equations are obtained by either Laplace transforming the linear PDE or by using Green identity for the linear as well as the nonlinear cases. The discretization of the so obtained integral equations results, for the linear and nonlinear problems, respectively, into a bi-dimensional Hausdorff problem and into a generalized moment problem (in which the kernel set { }nm n m x y has been replaced by sets { ( )} m m g x, y of more general linearly independent functions). In both cases, the corresponding inverse problem is numerically solved by approximating the associated finite moment problem by a truncated expansion.
publishDate 2012
dc.date.none.fl_str_mv 2012-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/272425
Pintarelli, María Beatriz; Vericat, Fernando; Klein-Gordon equation as a bi-dimensional moment problem; Pushpa Publishing House; Far East Journal Of Mathematical Sciences : Fjms; 70; 2; 10-2012; 201-225
0972-0871
CONICET Digital
CONICET
url http://hdl.handle.net/11336/272425
identifier_str_mv Pintarelli, María Beatriz; Vericat, Fernando; Klein-Gordon equation as a bi-dimensional moment problem; Pushpa Publishing House; Far East Journal Of Mathematical Sciences : Fjms; 70; 2; 10-2012; 201-225
0972-0871
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pushpa Publishing House
publisher.none.fl_str_mv Pushpa Publishing House
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083122730369024
score 13.22299