Linear Partial Differential Equations of First Order as Bi-Dimensional Inverse Moments Problem

Autores
Pintarelli, María Beatriz
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider linear partial differential equations of first order a(x,t)wx(x,t)+b(x,t)w1(x,t)=h(x,t)w(x,t)+r(x,t) on a region E=(a1, b1)x(a2,b2). We will see that we can write the equation in partial derivatives as an Fredholm integral equation of the first kind and will solve this latter with the techniques of inverse problem moments. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on problem of moments.
Facultad de Ingeniería (FI)
Materia
Matemática
Linear PDEs
Freholm Integral Equations
Generalized Moment Problem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/81098

id SEDICI_f9db6e5fe57a0e17de3702912f8076ce
oai_identifier_str oai:sedici.unlp.edu.ar:10915/81098
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Linear Partial Differential Equations of First Order as Bi-Dimensional Inverse Moments ProblemPintarelli, María BeatrizMatemáticaLinear PDEsFreholm Integral EquationsGeneralized Moment ProblemWe consider linear partial differential equations of first order a(x,t)wx(x,t)+b(x,t)w1(x,t)=h(x,t)w(x,t)+r(x,t) on a region E=(a1, b1)x(a2,b2). We will see that we can write the equation in partial derivatives as an Fredholm integral equation of the first kind and will solve this latter with the techniques of inverse problem moments. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on problem of moments.Facultad de Ingeniería (FI)2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf979-989http://sedici.unlp.edu.ar/handle/10915/81098enginfo:eu-repo/semantics/altIdentifier/issn/2152-7393info:eu-repo/semantics/altIdentifier/doi/10.4236/am.2015.66090info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:15:02Zoai:sedici.unlp.edu.ar:10915/81098Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:15:02.65SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Linear Partial Differential Equations of First Order as Bi-Dimensional Inverse Moments Problem
title Linear Partial Differential Equations of First Order as Bi-Dimensional Inverse Moments Problem
spellingShingle Linear Partial Differential Equations of First Order as Bi-Dimensional Inverse Moments Problem
Pintarelli, María Beatriz
Matemática
Linear PDEs
Freholm Integral Equations
Generalized Moment Problem
title_short Linear Partial Differential Equations of First Order as Bi-Dimensional Inverse Moments Problem
title_full Linear Partial Differential Equations of First Order as Bi-Dimensional Inverse Moments Problem
title_fullStr Linear Partial Differential Equations of First Order as Bi-Dimensional Inverse Moments Problem
title_full_unstemmed Linear Partial Differential Equations of First Order as Bi-Dimensional Inverse Moments Problem
title_sort Linear Partial Differential Equations of First Order as Bi-Dimensional Inverse Moments Problem
dc.creator.none.fl_str_mv Pintarelli, María Beatriz
author Pintarelli, María Beatriz
author_facet Pintarelli, María Beatriz
author_role author
dc.subject.none.fl_str_mv Matemática
Linear PDEs
Freholm Integral Equations
Generalized Moment Problem
topic Matemática
Linear PDEs
Freholm Integral Equations
Generalized Moment Problem
dc.description.none.fl_txt_mv We consider linear partial differential equations of first order a(x,t)wx(x,t)+b(x,t)w1(x,t)=h(x,t)w(x,t)+r(x,t) on a region E=(a1, b1)x(a2,b2). We will see that we can write the equation in partial derivatives as an Fredholm integral equation of the first kind and will solve this latter with the techniques of inverse problem moments. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on problem of moments.
Facultad de Ingeniería (FI)
description We consider linear partial differential equations of first order a(x,t)wx(x,t)+b(x,t)w1(x,t)=h(x,t)w(x,t)+r(x,t) on a region E=(a1, b1)x(a2,b2). We will see that we can write the equation in partial derivatives as an Fredholm integral equation of the first kind and will solve this latter with the techniques of inverse problem moments. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on problem of moments.
publishDate 2015
dc.date.none.fl_str_mv 2015-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/81098
url http://sedici.unlp.edu.ar/handle/10915/81098
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2152-7393
info:eu-repo/semantics/altIdentifier/doi/10.4236/am.2015.66090
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
979-989
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616022062006272
score 13.070432