Partial Differential Equations as Three-Dimensional Inverse Problem of Moments
- Autores
- Pintarelli, María Beatriz; Vericat, Fernando
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We considerer partial differential equations of second order, for example the Klein-Gordon equation, the Poisson equation, on a region E= (a1, b1)x(a2, b2)x(a3, b3). We will see that with a common procedure in all cases, we can write the equation in partial derivatives as an Fredholm integral equation of first kind and will solve this latter with the techniques of inverse problem moments. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on problem of moments.
Fil: Pintarelli, María Beatriz. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vericat, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina - Materia
-
Partial differential equations
Fredholm integral equations
Generalized moment problem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33885
Ver los metadatos del registro completo
id |
CONICETDig_b5c88b50b5573d71fd0b59e5553cb612 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33885 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Partial Differential Equations as Three-Dimensional Inverse Problem of MomentsPintarelli, María BeatrizVericat, FernandoPartial differential equationsFredholm integral equationsGeneralized moment problemhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We considerer partial differential equations of second order, for example the Klein-Gordon equation, the Poisson equation, on a region E= (a1, b1)x(a2, b2)x(a3, b3). We will see that with a common procedure in all cases, we can write the equation in partial derivatives as an Fredholm integral equation of first kind and will solve this latter with the techniques of inverse problem moments. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on problem of moments.Fil: Pintarelli, María Beatriz. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vericat, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaDavid Publishing2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33885Pintarelli, María Beatriz; Vericat, Fernando; Partial Differential Equations as Three-Dimensional Inverse Problem of Moments; David Publishing; Journal of Mathematics and System Science; 2014; 4; 10-2014; 657-6662159-5291CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.davidpublisher.org/index.php/Home/Article/index?id=484.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:07:47Zoai:ri.conicet.gov.ar:11336/33885instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:07:47.559CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Partial Differential Equations as Three-Dimensional Inverse Problem of Moments |
title |
Partial Differential Equations as Three-Dimensional Inverse Problem of Moments |
spellingShingle |
Partial Differential Equations as Three-Dimensional Inverse Problem of Moments Pintarelli, María Beatriz Partial differential equations Fredholm integral equations Generalized moment problem |
title_short |
Partial Differential Equations as Three-Dimensional Inverse Problem of Moments |
title_full |
Partial Differential Equations as Three-Dimensional Inverse Problem of Moments |
title_fullStr |
Partial Differential Equations as Three-Dimensional Inverse Problem of Moments |
title_full_unstemmed |
Partial Differential Equations as Three-Dimensional Inverse Problem of Moments |
title_sort |
Partial Differential Equations as Three-Dimensional Inverse Problem of Moments |
dc.creator.none.fl_str_mv |
Pintarelli, María Beatriz Vericat, Fernando |
author |
Pintarelli, María Beatriz |
author_facet |
Pintarelli, María Beatriz Vericat, Fernando |
author_role |
author |
author2 |
Vericat, Fernando |
author2_role |
author |
dc.subject.none.fl_str_mv |
Partial differential equations Fredholm integral equations Generalized moment problem |
topic |
Partial differential equations Fredholm integral equations Generalized moment problem |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We considerer partial differential equations of second order, for example the Klein-Gordon equation, the Poisson equation, on a region E= (a1, b1)x(a2, b2)x(a3, b3). We will see that with a common procedure in all cases, we can write the equation in partial derivatives as an Fredholm integral equation of first kind and will solve this latter with the techniques of inverse problem moments. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on problem of moments. Fil: Pintarelli, María Beatriz. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Vericat, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina |
description |
We considerer partial differential equations of second order, for example the Klein-Gordon equation, the Poisson equation, on a region E= (a1, b1)x(a2, b2)x(a3, b3). We will see that with a common procedure in all cases, we can write the equation in partial derivatives as an Fredholm integral equation of first kind and will solve this latter with the techniques of inverse problem moments. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on problem of moments. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33885 Pintarelli, María Beatriz; Vericat, Fernando; Partial Differential Equations as Three-Dimensional Inverse Problem of Moments; David Publishing; Journal of Mathematics and System Science; 2014; 4; 10-2014; 657-666 2159-5291 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/33885 |
identifier_str_mv |
Pintarelli, María Beatriz; Vericat, Fernando; Partial Differential Equations as Three-Dimensional Inverse Problem of Moments; David Publishing; Journal of Mathematics and System Science; 2014; 4; 10-2014; 657-666 2159-5291 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.davidpublisher.org/index.php/Home/Article/index?id=484.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
David Publishing |
publisher.none.fl_str_mv |
David Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980355582197760 |
score |
12.993085 |