Knowledge discovery process for description of spatially referenced clusters
- Autores
- Róttoli, Giovanni; Merlino, Hernán; García Martínez, Ramón
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Spatial clustering is an important field of spatial data mining and knowledge discovery that serves to partition a spatial data set to obtain disjoint subsets with spatial elements that are similar to each other. Existing algorithms can be used to perform three types of cluster analyses, including clustering of spatial points, regionalization and point pattern analysis. However, all these existing methods do not provide a description of the discovered spatial clusters, which is useful for decision making in many different fields. This work proposes a knowledge discovery process for the description of spatially referenced clusters that uses decision tree learning algorithms. Two proofs of concept of the proposed process using different spatial clustering algorithm on real data are also provided.
Facultad de Informática - Materia
-
Ciencias Informáticas
Decision tree learning
Knowledge discovery process
Regionalization
Spatial clustering
Spatial data mining - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/87556
Ver los metadatos del registro completo
id |
SEDICI_116c69ff03673e87fd77fef5b368999c |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/87556 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Knowledge discovery process for description of spatially referenced clustersRóttoli, GiovanniMerlino, HernánGarcía Martínez, RamónCiencias InformáticasDecision tree learningKnowledge discovery processRegionalizationSpatial clusteringSpatial data miningSpatial clustering is an important field of spatial data mining and knowledge discovery that serves to partition a spatial data set to obtain disjoint subsets with spatial elements that are similar to each other. Existing algorithms can be used to perform three types of cluster analyses, including clustering of spatial points, regionalization and point pattern analysis. However, all these existing methods do not provide a description of the discovered spatial clusters, which is useful for decision making in many different fields. This work proposes a knowledge discovery process for the description of spatially referenced clusters that uses decision tree learning algorithms. Two proofs of concept of the proposed process using different spatial clustering algorithm on real data are also provided.Facultad de Informática2017-07info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf410-415http://sedici.unlp.edu.ar/handle/10915/87556enginfo:eu-repo/semantics/altIdentifier/isbn/1891706411info:eu-repo/semantics/altIdentifier/issn/2325-9000info:eu-repo/semantics/altIdentifier/doi/10.18293/SEKE2017-013info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:49:35Zoai:sedici.unlp.edu.ar:10915/87556Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:49:36.202SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Knowledge discovery process for description of spatially referenced clusters |
title |
Knowledge discovery process for description of spatially referenced clusters |
spellingShingle |
Knowledge discovery process for description of spatially referenced clusters Róttoli, Giovanni Ciencias Informáticas Decision tree learning Knowledge discovery process Regionalization Spatial clustering Spatial data mining |
title_short |
Knowledge discovery process for description of spatially referenced clusters |
title_full |
Knowledge discovery process for description of spatially referenced clusters |
title_fullStr |
Knowledge discovery process for description of spatially referenced clusters |
title_full_unstemmed |
Knowledge discovery process for description of spatially referenced clusters |
title_sort |
Knowledge discovery process for description of spatially referenced clusters |
dc.creator.none.fl_str_mv |
Róttoli, Giovanni Merlino, Hernán García Martínez, Ramón |
author |
Róttoli, Giovanni |
author_facet |
Róttoli, Giovanni Merlino, Hernán García Martínez, Ramón |
author_role |
author |
author2 |
Merlino, Hernán García Martínez, Ramón |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Decision tree learning Knowledge discovery process Regionalization Spatial clustering Spatial data mining |
topic |
Ciencias Informáticas Decision tree learning Knowledge discovery process Regionalization Spatial clustering Spatial data mining |
dc.description.none.fl_txt_mv |
Spatial clustering is an important field of spatial data mining and knowledge discovery that serves to partition a spatial data set to obtain disjoint subsets with spatial elements that are similar to each other. Existing algorithms can be used to perform three types of cluster analyses, including clustering of spatial points, regionalization and point pattern analysis. However, all these existing methods do not provide a description of the discovered spatial clusters, which is useful for decision making in many different fields. This work proposes a knowledge discovery process for the description of spatially referenced clusters that uses decision tree learning algorithms. Two proofs of concept of the proposed process using different spatial clustering algorithm on real data are also provided. Facultad de Informática |
description |
Spatial clustering is an important field of spatial data mining and knowledge discovery that serves to partition a spatial data set to obtain disjoint subsets with spatial elements that are similar to each other. Existing algorithms can be used to perform three types of cluster analyses, including clustering of spatial points, regionalization and point pattern analysis. However, all these existing methods do not provide a description of the discovered spatial clusters, which is useful for decision making in many different fields. This work proposes a knowledge discovery process for the description of spatially referenced clusters that uses decision tree learning algorithms. Two proofs of concept of the proposed process using different spatial clustering algorithm on real data are also provided. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/87556 |
url |
http://sedici.unlp.edu.ar/handle/10915/87556 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/1891706411 info:eu-repo/semantics/altIdentifier/issn/2325-9000 info:eu-repo/semantics/altIdentifier/doi/10.18293/SEKE2017-013 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 410-415 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260372883505152 |
score |
13.13397 |