Knowledge discovery process for description of spatially referenced clusters
- Autores
- Rottoli, Giovanni Daián; Merlino, Hernán Daniel; García Martínez, Ramón
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Spatial clustering is an important field of spatial data mining and knowledge discovery that serves to partition a spatial data set to obtain disjoint subsets with spatial elements that are similar to each other. Existing algorithms can be used to perform three types of cluster analyses, including clustering of spatial points, regionalization and point pattern analysis. However, all these existing methods do not provide a description of the discovered spatial clusters, which is useful for decision making in many different fields. This work proposes a knowledge discovery process for the description of spatially referenced clusters that uses decision tree learning algorithms. Two proofs of concept of the proposed process using different spat ial clustering algorithm on real data are also provided.
Fil: Rottoli, Giovanni Daián. Universidad Nacional de Lanús; Argentina.
Fil: Merlino, Hernán Daniel. Universidad Nacional de Lanús; Argentina.
Fil: García Martínez, Ramón. Universidad Nacional de Lanús. Departamento Desarrollo Productivo y Tecnológico. Grupo de Investigación en Sistemas de Información; Argentina.
Fil: Rottoli, Giovanni Daián. Universidad Tecnológica Nacional. Facultad Regional Concepción del Uruguay. Departamento Ingeniería en Sistemas de Información. Grupo de Investigación en Bases de Datos; Argentina.
Fil: Rottoli, Giovanni Daián. Universidad Nacional de La Plata; Argentina.
Fil: García Martínez, Ramón. Comisión de Investigaciones Científicas; Argentina. - Materia
-
Knowledge discovery process
Spatial clustering
Regionalization
Decision tree learning
Spatial data mining - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Tecnológica Nacional
- OAI Identificador
- oai:ria.utn.edu.ar:20.500.12272/3323
Ver los metadatos del registro completo
id |
RIAUTN_eed1cb1c8e67cbbc3ab1a3319848fd62 |
---|---|
oai_identifier_str |
oai:ria.utn.edu.ar:20.500.12272/3323 |
network_acronym_str |
RIAUTN |
repository_id_str |
a |
network_name_str |
Repositorio Institucional Abierto (UTN) |
spelling |
Knowledge discovery process for description of spatially referenced clustersRottoli, Giovanni DaiánMerlino, Hernán DanielGarcía Martínez, RamónKnowledge discovery processSpatial clusteringRegionalizationDecision tree learningSpatial data miningSpatial clustering is an important field of spatial data mining and knowledge discovery that serves to partition a spatial data set to obtain disjoint subsets with spatial elements that are similar to each other. Existing algorithms can be used to perform three types of cluster analyses, including clustering of spatial points, regionalization and point pattern analysis. However, all these existing methods do not provide a description of the discovered spatial clusters, which is useful for decision making in many different fields. This work proposes a knowledge discovery process for the description of spatially referenced clusters that uses decision tree learning algorithms. Two proofs of concept of the proposed process using different spat ial clustering algorithm on real data are also provided.Fil: Rottoli, Giovanni Daián. Universidad Nacional de Lanús; Argentina.Fil: Merlino, Hernán Daniel. Universidad Nacional de Lanús; Argentina.Fil: García Martínez, Ramón. Universidad Nacional de Lanús. Departamento Desarrollo Productivo y Tecnológico. Grupo de Investigación en Sistemas de Información; Argentina.Fil: Rottoli, Giovanni Daián. Universidad Tecnológica Nacional. Facultad Regional Concepción del Uruguay. Departamento Ingeniería en Sistemas de Información. Grupo de Investigación en Bases de Datos; Argentina.Fil: Rottoli, Giovanni Daián. Universidad Nacional de La Plata; Argentina.Fil: García Martínez, Ramón. Comisión de Investigaciones Científicas; Argentina.2018-12-13T11:47:04Z2018-12-13T11:47:04Z2017info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfInternational Conference on Software Engineering & Knowledge Engineering. Ed. USA KSI Research Inc. and Knowledge Systems Institute, 410415 (2017)http://hdl.handle.net/20.500.12272/332310.18293/SEKE2017-013engenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Rottoli, Giovanni Daián ; Merlino, Hernán Daniel ; García Martínez, RamónNo comercial con fines academicosAttribution-NonCommercial-NoDerivatives 4.0 Internacionalreponame:Repositorio Institucional Abierto (UTN)instname:Universidad Tecnológica Nacional2025-09-11T10:50:06Zoai:ria.utn.edu.ar:20.500.12272/3323instacron:UTNInstitucionalhttp://ria.utn.edu.ar/Universidad públicaNo correspondehttp://ria.utn.edu.ar/oaigestionria@rec.utn.edu.ar; fsuarez@rec.utn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:a2025-09-11 10:50:06.41Repositorio Institucional Abierto (UTN) - Universidad Tecnológica Nacionalfalse |
dc.title.none.fl_str_mv |
Knowledge discovery process for description of spatially referenced clusters |
title |
Knowledge discovery process for description of spatially referenced clusters |
spellingShingle |
Knowledge discovery process for description of spatially referenced clusters Rottoli, Giovanni Daián Knowledge discovery process Spatial clustering Regionalization Decision tree learning Spatial data mining |
title_short |
Knowledge discovery process for description of spatially referenced clusters |
title_full |
Knowledge discovery process for description of spatially referenced clusters |
title_fullStr |
Knowledge discovery process for description of spatially referenced clusters |
title_full_unstemmed |
Knowledge discovery process for description of spatially referenced clusters |
title_sort |
Knowledge discovery process for description of spatially referenced clusters |
dc.creator.none.fl_str_mv |
Rottoli, Giovanni Daián Merlino, Hernán Daniel García Martínez, Ramón |
author |
Rottoli, Giovanni Daián |
author_facet |
Rottoli, Giovanni Daián Merlino, Hernán Daniel García Martínez, Ramón |
author_role |
author |
author2 |
Merlino, Hernán Daniel García Martínez, Ramón |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Knowledge discovery process Spatial clustering Regionalization Decision tree learning Spatial data mining |
topic |
Knowledge discovery process Spatial clustering Regionalization Decision tree learning Spatial data mining |
dc.description.none.fl_txt_mv |
Spatial clustering is an important field of spatial data mining and knowledge discovery that serves to partition a spatial data set to obtain disjoint subsets with spatial elements that are similar to each other. Existing algorithms can be used to perform three types of cluster analyses, including clustering of spatial points, regionalization and point pattern analysis. However, all these existing methods do not provide a description of the discovered spatial clusters, which is useful for decision making in many different fields. This work proposes a knowledge discovery process for the description of spatially referenced clusters that uses decision tree learning algorithms. Two proofs of concept of the proposed process using different spat ial clustering algorithm on real data are also provided. Fil: Rottoli, Giovanni Daián. Universidad Nacional de Lanús; Argentina. Fil: Merlino, Hernán Daniel. Universidad Nacional de Lanús; Argentina. Fil: García Martínez, Ramón. Universidad Nacional de Lanús. Departamento Desarrollo Productivo y Tecnológico. Grupo de Investigación en Sistemas de Información; Argentina. Fil: Rottoli, Giovanni Daián. Universidad Tecnológica Nacional. Facultad Regional Concepción del Uruguay. Departamento Ingeniería en Sistemas de Información. Grupo de Investigación en Bases de Datos; Argentina. Fil: Rottoli, Giovanni Daián. Universidad Nacional de La Plata; Argentina. Fil: García Martínez, Ramón. Comisión de Investigaciones Científicas; Argentina. |
description |
Spatial clustering is an important field of spatial data mining and knowledge discovery that serves to partition a spatial data set to obtain disjoint subsets with spatial elements that are similar to each other. Existing algorithms can be used to perform three types of cluster analyses, including clustering of spatial points, regionalization and point pattern analysis. However, all these existing methods do not provide a description of the discovered spatial clusters, which is useful for decision making in many different fields. This work proposes a knowledge discovery process for the description of spatially referenced clusters that uses decision tree learning algorithms. Two proofs of concept of the proposed process using different spat ial clustering algorithm on real data are also provided. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2018-12-13T11:47:04Z 2018-12-13T11:47:04Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
International Conference on Software Engineering & Knowledge Engineering. Ed. USA KSI Research Inc. and Knowledge Systems Institute, 410415 (2017) http://hdl.handle.net/20.500.12272/3323 10.18293/SEKE2017-013 |
identifier_str_mv |
International Conference on Software Engineering & Knowledge Engineering. Ed. USA KSI Research Inc. and Knowledge Systems Institute, 410415 (2017) 10.18293/SEKE2017-013 |
url |
http://hdl.handle.net/20.500.12272/3323 |
dc.language.none.fl_str_mv |
eng eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ Rottoli, Giovanni Daián ; Merlino, Hernán Daniel ; García Martínez, Ramón No comercial con fines academicos Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Rottoli, Giovanni Daián ; Merlino, Hernán Daniel ; García Martínez, Ramón No comercial con fines academicos Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositorio Institucional Abierto (UTN) instname:Universidad Tecnológica Nacional |
reponame_str |
Repositorio Institucional Abierto (UTN) |
collection |
Repositorio Institucional Abierto (UTN) |
instname_str |
Universidad Tecnológica Nacional |
repository.name.fl_str_mv |
Repositorio Institucional Abierto (UTN) - Universidad Tecnológica Nacional |
repository.mail.fl_str_mv |
gestionria@rec.utn.edu.ar; fsuarez@rec.utn.edu.ar |
_version_ |
1842976654816706560 |
score |
12.993085 |