Knowledge discovery based on computational taxonomy and intelligent data mining
- Autores
- Perichinsky, Gregorio; García Martínez, Ramón; Proto, Araceli
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This study investigates an approach of knowledge discovery and data mining in insufficient databases. An application of Computational Taxonomy analysis demonstrates that the approach is effective in such a data mining process. The approach is characterized by the use of both the second type of domain knowledge and visualization. This type of knowledge is newly defined in this study and deduced from supposition about background situations of the domain. The supposition is triggered by strong intuition about the extracted features in a recurrent process of data mining. This type of domain knowledge is useful not only for discovering interesting knowledge but also for guiding the subsequent search for more explicit and interesting knowledge. The visualization is very useful for triggering the supposition.
Área: Ingeniería de Software - Bases de Datos
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Data mining
Clustering
knowledge discovery
insufficient database
taxonomy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23755
Ver los metadatos del registro completo
id |
SEDICI_b93d744256a4bed75c1a5f2559256ab3 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23755 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Knowledge discovery based on computational taxonomy and intelligent data miningPerichinsky, GregorioGarcía Martínez, RamónProto, AraceliCiencias InformáticasData miningClusteringknowledge discoveryinsufficient databasetaxonomyThis study investigates an approach of knowledge discovery and data mining in insufficient databases. An application of Computational Taxonomy analysis demonstrates that the approach is effective in such a data mining process. The approach is characterized by the use of both the second type of domain knowledge and visualization. This type of knowledge is newly defined in this study and deduced from supposition about background situations of the domain. The supposition is triggered by strong intuition about the extracted features in a recurrent process of data mining. This type of domain knowledge is useful not only for discovering interesting knowledge but also for guiding the subsequent search for more explicit and interesting knowledge. The visualization is very useful for triggering the supposition.Área: Ingeniería de Software - Bases de DatosRed de Universidades con Carreras en Informática (RedUNCI)2000-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23755enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T09:38:59Zoai:sedici.unlp.edu.ar:10915/23755Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 09:38:59.609SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Knowledge discovery based on computational taxonomy and intelligent data mining |
title |
Knowledge discovery based on computational taxonomy and intelligent data mining |
spellingShingle |
Knowledge discovery based on computational taxonomy and intelligent data mining Perichinsky, Gregorio Ciencias Informáticas Data mining Clustering knowledge discovery insufficient database taxonomy |
title_short |
Knowledge discovery based on computational taxonomy and intelligent data mining |
title_full |
Knowledge discovery based on computational taxonomy and intelligent data mining |
title_fullStr |
Knowledge discovery based on computational taxonomy and intelligent data mining |
title_full_unstemmed |
Knowledge discovery based on computational taxonomy and intelligent data mining |
title_sort |
Knowledge discovery based on computational taxonomy and intelligent data mining |
dc.creator.none.fl_str_mv |
Perichinsky, Gregorio García Martínez, Ramón Proto, Araceli |
author |
Perichinsky, Gregorio |
author_facet |
Perichinsky, Gregorio García Martínez, Ramón Proto, Araceli |
author_role |
author |
author2 |
García Martínez, Ramón Proto, Araceli |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Data mining Clustering knowledge discovery insufficient database taxonomy |
topic |
Ciencias Informáticas Data mining Clustering knowledge discovery insufficient database taxonomy |
dc.description.none.fl_txt_mv |
This study investigates an approach of knowledge discovery and data mining in insufficient databases. An application of Computational Taxonomy analysis demonstrates that the approach is effective in such a data mining process. The approach is characterized by the use of both the second type of domain knowledge and visualization. This type of knowledge is newly defined in this study and deduced from supposition about background situations of the domain. The supposition is triggered by strong intuition about the extracted features in a recurrent process of data mining. This type of domain knowledge is useful not only for discovering interesting knowledge but also for guiding the subsequent search for more explicit and interesting knowledge. The visualization is very useful for triggering the supposition. Área: Ingeniería de Software - Bases de Datos Red de Universidades con Carreras en Informática (RedUNCI) |
description |
This study investigates an approach of knowledge discovery and data mining in insufficient databases. An application of Computational Taxonomy analysis demonstrates that the approach is effective in such a data mining process. The approach is characterized by the use of both the second type of domain knowledge and visualization. This type of knowledge is newly defined in this study and deduced from supposition about background situations of the domain. The supposition is triggered by strong intuition about the extracted features in a recurrent process of data mining. This type of domain knowledge is useful not only for discovering interesting knowledge but also for guiding the subsequent search for more explicit and interesting knowledge. The visualization is very useful for triggering the supposition. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23755 |
url |
http://sedici.unlp.edu.ar/handle/10915/23755 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1843532059542290432 |
score |
13.000565 |