Spatial association discovery process using frequent subgraph mining

Autores
Rottoli, Giovanni Daián; Merlino, Hernán
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Spatial associations are one of the most relevant kinds of patterns used by business intelligence regarding spatial data. Due to the characteristics of this particular type of information, different approaches have been proposed for spatial association mining. This wide variety of methods has entailed the need for a process to integrate the activities for association discovery, one that is easy to implement and flexible enough to be adapted to any particular situation, particularly for small and medium-size projects to guide the useful pattern discovery process. Thus, this work proposes an adaptable knowledge discovery process that uses graph theory to model different spatial relationships from multiple scenarios, and frequent subgraph mining to discover spatial associations. A proof of concept is presented using real data.
Facultad de Informática
Materia
Informática
Frequent subgraph mining
SARM
Spatial association mining
Spatial data mining
Spatial knowledge discovery
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/141906

id SEDICI_0855949a4c79341874d3bdf9dc5c6ba1
oai_identifier_str oai:sedici.unlp.edu.ar:10915/141906
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Spatial association discovery process using frequent subgraph miningRottoli, Giovanni DaiánMerlino, HernánInformáticaFrequent subgraph miningSARMSpatial association miningSpatial data miningSpatial knowledge discoverySpatial associations are one of the most relevant kinds of patterns used by business intelligence regarding spatial data. Due to the characteristics of this particular type of information, different approaches have been proposed for spatial association mining. This wide variety of methods has entailed the need for a process to integrate the activities for association discovery, one that is easy to implement and flexible enough to be adapted to any particular situation, particularly for small and medium-size projects to guide the useful pattern discovery process. Thus, this work proposes an adaptable knowledge discovery process that uses graph theory to model different spatial relationships from multiple scenarios, and frequent subgraph mining to discover spatial associations. A proof of concept is presented using real data.Facultad de Informática2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1884-1891http://sedici.unlp.edu.ar/handle/10915/141906enginfo:eu-repo/semantics/altIdentifier/issn/1693-6930info:eu-repo/semantics/altIdentifier/issn/2302-9293info:eu-repo/semantics/altIdentifier/issn/2087-278Xinfo:eu-repo/semantics/altIdentifier/doi/10.12928/telkomnika.v18i4.13858info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/4.0/Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:04:42Zoai:sedici.unlp.edu.ar:10915/141906Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:04:43.222SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Spatial association discovery process using frequent subgraph mining
title Spatial association discovery process using frequent subgraph mining
spellingShingle Spatial association discovery process using frequent subgraph mining
Rottoli, Giovanni Daián
Informática
Frequent subgraph mining
SARM
Spatial association mining
Spatial data mining
Spatial knowledge discovery
title_short Spatial association discovery process using frequent subgraph mining
title_full Spatial association discovery process using frequent subgraph mining
title_fullStr Spatial association discovery process using frequent subgraph mining
title_full_unstemmed Spatial association discovery process using frequent subgraph mining
title_sort Spatial association discovery process using frequent subgraph mining
dc.creator.none.fl_str_mv Rottoli, Giovanni Daián
Merlino, Hernán
author Rottoli, Giovanni Daián
author_facet Rottoli, Giovanni Daián
Merlino, Hernán
author_role author
author2 Merlino, Hernán
author2_role author
dc.subject.none.fl_str_mv Informática
Frequent subgraph mining
SARM
Spatial association mining
Spatial data mining
Spatial knowledge discovery
topic Informática
Frequent subgraph mining
SARM
Spatial association mining
Spatial data mining
Spatial knowledge discovery
dc.description.none.fl_txt_mv Spatial associations are one of the most relevant kinds of patterns used by business intelligence regarding spatial data. Due to the characteristics of this particular type of information, different approaches have been proposed for spatial association mining. This wide variety of methods has entailed the need for a process to integrate the activities for association discovery, one that is easy to implement and flexible enough to be adapted to any particular situation, particularly for small and medium-size projects to guide the useful pattern discovery process. Thus, this work proposes an adaptable knowledge discovery process that uses graph theory to model different spatial relationships from multiple scenarios, and frequent subgraph mining to discover spatial associations. A proof of concept is presented using real data.
Facultad de Informática
description Spatial associations are one of the most relevant kinds of patterns used by business intelligence regarding spatial data. Due to the characteristics of this particular type of information, different approaches have been proposed for spatial association mining. This wide variety of methods has entailed the need for a process to integrate the activities for association discovery, one that is easy to implement and flexible enough to be adapted to any particular situation, particularly for small and medium-size projects to guide the useful pattern discovery process. Thus, this work proposes an adaptable knowledge discovery process that uses graph theory to model different spatial relationships from multiple scenarios, and frequent subgraph mining to discover spatial associations. A proof of concept is presented using real data.
publishDate 2020
dc.date.none.fl_str_mv 2020-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/141906
url http://sedici.unlp.edu.ar/handle/10915/141906
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1693-6930
info:eu-repo/semantics/altIdentifier/issn/2302-9293
info:eu-repo/semantics/altIdentifier/issn/2087-278X
info:eu-repo/semantics/altIdentifier/doi/10.12928/telkomnika.v18i4.13858
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-sa/4.0/
Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-sa/4.0/
Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1884-1891
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260546657714176
score 13.13397