Co-location rules discovery process focused on reference spatial features using decision tree learning
- Autores
- Rottoli, Giovanni Daián; Merlino, Hernán Daniel; García Martínez, Ramón
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The co-location discovery process serves to find subsets of spatial features frequently located together. Many algorithms and methods have been designed in recent years; however, finding this kind of patterns around specific spatial features is a task in which the existing solutions provide incorrect results. Throughout this paper we propose a knowledge discovery process to find co-location patterns focused on reference features using decision tree learning algorithms on transactional data generated using maximal cliques. A validation test of this process is provided.
Fil: Merlino, Hernán Daniel. Universidad Nacional de Lanús; Argentina.
Fil: Rottoli, Giovanni Daián. Universidad Tecnológica Nacional.Facultad Regional Concepción del Uruguay. Departamento Ingeniería en Sistemas de Información. Grupo de Investigación en Bases de Datos; Argentina.
Fil: Rottoli, Giovanni Daián. Universidad Nacional de La Plata; Argentina.
Fil: Rottoli, Giovanni Daián. Universidad Nacional de Lanús; Argentina.
Fil: García Martínez, Ramón. Universidad Nacional de Lanús. Departamento Desarrollo Productivo y Tecnológico. Grupo de Investigación en Sistemas de Información; Argentina.
Fil: García Martínez, Ramón. Comisión de Investigaciones Científicas; Argentina.
Peer Reviewed - Materia
-
Co-location patterns
Spatial data mining
Decision trees algorithms
Maximal cliques
Knowledge discovery process - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Tecnológica Nacional
- OAI Identificador
- oai:ria.utn.edu.ar:20.500.12272/3308
Ver los metadatos del registro completo
id |
RIAUTN_f79752977508a4647ae63c0adcc77186 |
---|---|
oai_identifier_str |
oai:ria.utn.edu.ar:20.500.12272/3308 |
network_acronym_str |
RIAUTN |
repository_id_str |
a |
network_name_str |
Repositorio Institucional Abierto (UTN) |
spelling |
Co-location rules discovery process focused on reference spatial features using decision tree learningRottoli, Giovanni DaiánMerlino, Hernán DanielGarcía Martínez, RamónCo-location patternsSpatial data miningDecision trees algorithmsMaximal cliquesKnowledge discovery processThe co-location discovery process serves to find subsets of spatial features frequently located together. Many algorithms and methods have been designed in recent years; however, finding this kind of patterns around specific spatial features is a task in which the existing solutions provide incorrect results. Throughout this paper we propose a knowledge discovery process to find co-location patterns focused on reference features using decision tree learning algorithms on transactional data generated using maximal cliques. A validation test of this process is provided.Fil: Merlino, Hernán Daniel. Universidad Nacional de Lanús; Argentina.Fil: Rottoli, Giovanni Daián. Universidad Tecnológica Nacional.Facultad Regional Concepción del Uruguay. Departamento Ingeniería en Sistemas de Información. Grupo de Investigación en Bases de Datos; Argentina.Fil: Rottoli, Giovanni Daián. Universidad Nacional de La Plata; Argentina.Fil: Rottoli, Giovanni Daián. Universidad Nacional de Lanús; Argentina.Fil: García Martínez, Ramón. Universidad Nacional de Lanús. Departamento Desarrollo Productivo y Tecnológico. Grupo de Investigación en Sistemas de Información; Argentina.Fil: García Martínez, Ramón. Comisión de Investigaciones Científicas; Argentina.Peer Reviewed2018-11-30T23:43:53Z2018-11-30T23:43:53Z2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfAdvances in Artificial Intelligence: From Theory to Practice 10350: 221-226 (2017)http://hdl.handle.net/20.500.12272/3308https://doi.org/10.1007/978-3-319-60042-0_25enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Rottoli, Giovanni Daián ; Merlino, Hernán Daniel ; García Martínez, RamónNo comercial con fines académicosAttribution-NonCommercial-NoDerivatives 4.0 Internacionalreponame:Repositorio Institucional Abierto (UTN)instname:Universidad Tecnológica Nacional2025-09-04T11:14:39Zoai:ria.utn.edu.ar:20.500.12272/3308instacron:UTNInstitucionalhttp://ria.utn.edu.ar/Universidad públicaNo correspondehttp://ria.utn.edu.ar/oaigestionria@rec.utn.edu.ar; fsuarez@rec.utn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:a2025-09-04 11:14:39.528Repositorio Institucional Abierto (UTN) - Universidad Tecnológica Nacionalfalse |
dc.title.none.fl_str_mv |
Co-location rules discovery process focused on reference spatial features using decision tree learning |
title |
Co-location rules discovery process focused on reference spatial features using decision tree learning |
spellingShingle |
Co-location rules discovery process focused on reference spatial features using decision tree learning Rottoli, Giovanni Daián Co-location patterns Spatial data mining Decision trees algorithms Maximal cliques Knowledge discovery process |
title_short |
Co-location rules discovery process focused on reference spatial features using decision tree learning |
title_full |
Co-location rules discovery process focused on reference spatial features using decision tree learning |
title_fullStr |
Co-location rules discovery process focused on reference spatial features using decision tree learning |
title_full_unstemmed |
Co-location rules discovery process focused on reference spatial features using decision tree learning |
title_sort |
Co-location rules discovery process focused on reference spatial features using decision tree learning |
dc.creator.none.fl_str_mv |
Rottoli, Giovanni Daián Merlino, Hernán Daniel García Martínez, Ramón |
author |
Rottoli, Giovanni Daián |
author_facet |
Rottoli, Giovanni Daián Merlino, Hernán Daniel García Martínez, Ramón |
author_role |
author |
author2 |
Merlino, Hernán Daniel García Martínez, Ramón |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Co-location patterns Spatial data mining Decision trees algorithms Maximal cliques Knowledge discovery process |
topic |
Co-location patterns Spatial data mining Decision trees algorithms Maximal cliques Knowledge discovery process |
dc.description.none.fl_txt_mv |
The co-location discovery process serves to find subsets of spatial features frequently located together. Many algorithms and methods have been designed in recent years; however, finding this kind of patterns around specific spatial features is a task in which the existing solutions provide incorrect results. Throughout this paper we propose a knowledge discovery process to find co-location patterns focused on reference features using decision tree learning algorithms on transactional data generated using maximal cliques. A validation test of this process is provided. Fil: Merlino, Hernán Daniel. Universidad Nacional de Lanús; Argentina. Fil: Rottoli, Giovanni Daián. Universidad Tecnológica Nacional.Facultad Regional Concepción del Uruguay. Departamento Ingeniería en Sistemas de Información. Grupo de Investigación en Bases de Datos; Argentina. Fil: Rottoli, Giovanni Daián. Universidad Nacional de La Plata; Argentina. Fil: Rottoli, Giovanni Daián. Universidad Nacional de Lanús; Argentina. Fil: García Martínez, Ramón. Universidad Nacional de Lanús. Departamento Desarrollo Productivo y Tecnológico. Grupo de Investigación en Sistemas de Información; Argentina. Fil: García Martínez, Ramón. Comisión de Investigaciones Científicas; Argentina. Peer Reviewed |
description |
The co-location discovery process serves to find subsets of spatial features frequently located together. Many algorithms and methods have been designed in recent years; however, finding this kind of patterns around specific spatial features is a task in which the existing solutions provide incorrect results. Throughout this paper we propose a knowledge discovery process to find co-location patterns focused on reference features using decision tree learning algorithms on transactional data generated using maximal cliques. A validation test of this process is provided. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2018-11-30T23:43:53Z 2018-11-30T23:43:53Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Advances in Artificial Intelligence: From Theory to Practice 10350: 221-226 (2017) http://hdl.handle.net/20.500.12272/3308 https://doi.org/10.1007/978-3-319-60042-0_25 |
identifier_str_mv |
Advances in Artificial Intelligence: From Theory to Practice 10350: 221-226 (2017) |
url |
http://hdl.handle.net/20.500.12272/3308 https://doi.org/10.1007/978-3-319-60042-0_25 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ Rottoli, Giovanni Daián ; Merlino, Hernán Daniel ; García Martínez, Ramón No comercial con fines académicos Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Rottoli, Giovanni Daián ; Merlino, Hernán Daniel ; García Martínez, Ramón No comercial con fines académicos Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositorio Institucional Abierto (UTN) instname:Universidad Tecnológica Nacional |
reponame_str |
Repositorio Institucional Abierto (UTN) |
collection |
Repositorio Institucional Abierto (UTN) |
instname_str |
Universidad Tecnológica Nacional |
repository.name.fl_str_mv |
Repositorio Institucional Abierto (UTN) - Universidad Tecnológica Nacional |
repository.mail.fl_str_mv |
gestionria@rec.utn.edu.ar; fsuarez@rec.utn.edu.ar |
_version_ |
1842344356452761600 |
score |
12.623145 |