Sentiments and Opinions From Twitter About Peruvian Touristic Places Using Correspondence Analysis
- Autores
- Cajachahua, Luis; Burga, Indira
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Tourism in Perú has become very important, since there is a growing number of tourists arriving each year. This paper focus in understand what do English-speaking tourists consider when they visit Perú. We obtained all the tweets written in english during the year 2016, filtered by a list of touristic places visited. In total, more than 192 thousand tweets were collected. We performed different analysis to describe the data, including correspondence analysis, a statistical technique which is normally applied to categorical data. The goal was to understand the sentiments and opinions expressed in those tweets.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Perú
sentiment analysis
text mining
correspondence analysis
twitter
tourism - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/72096
Ver los metadatos del registro completo
id |
SEDICI_077c956e822cae7ee63baa769ddca2c3 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/72096 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Sentiments and Opinions From Twitter About Peruvian Touristic Places Using Correspondence AnalysisCajachahua, LuisBurga, IndiraCiencias InformáticasPerúsentiment analysistext miningcorrespondence analysistwittertourismTourism in Perú has become very important, since there is a growing number of tourists arriving each year. This paper focus in understand what do English-speaking tourists consider when they visit Perú. We obtained all the tweets written in english during the year 2016, filtered by a list of touristic places visited. In total, more than 192 thousand tweets were collected. We performed different analysis to describe the data, including correspondence analysis, a statistical technique which is normally applied to categorical data. The goal was to understand the sentiments and opinions expressed in those tweets.Sociedad Argentina de Informática e Investigación Operativa2018-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf9-10http://sedici.unlp.edu.ar/handle/10915/72096enginfo:eu-repo/semantics/altIdentifier/issn/2618-3196info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/3.0/Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:43:49Zoai:sedici.unlp.edu.ar:10915/72096Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:43:49.744SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Sentiments and Opinions From Twitter About Peruvian Touristic Places Using Correspondence Analysis |
title |
Sentiments and Opinions From Twitter About Peruvian Touristic Places Using Correspondence Analysis |
spellingShingle |
Sentiments and Opinions From Twitter About Peruvian Touristic Places Using Correspondence Analysis Cajachahua, Luis Ciencias Informáticas Perú sentiment analysis text mining correspondence analysis tourism |
title_short |
Sentiments and Opinions From Twitter About Peruvian Touristic Places Using Correspondence Analysis |
title_full |
Sentiments and Opinions From Twitter About Peruvian Touristic Places Using Correspondence Analysis |
title_fullStr |
Sentiments and Opinions From Twitter About Peruvian Touristic Places Using Correspondence Analysis |
title_full_unstemmed |
Sentiments and Opinions From Twitter About Peruvian Touristic Places Using Correspondence Analysis |
title_sort |
Sentiments and Opinions From Twitter About Peruvian Touristic Places Using Correspondence Analysis |
dc.creator.none.fl_str_mv |
Cajachahua, Luis Burga, Indira |
author |
Cajachahua, Luis |
author_facet |
Cajachahua, Luis Burga, Indira |
author_role |
author |
author2 |
Burga, Indira |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Perú sentiment analysis text mining correspondence analysis tourism |
topic |
Ciencias Informáticas Perú sentiment analysis text mining correspondence analysis tourism |
dc.description.none.fl_txt_mv |
Tourism in Perú has become very important, since there is a growing number of tourists arriving each year. This paper focus in understand what do English-speaking tourists consider when they visit Perú. We obtained all the tweets written in english during the year 2016, filtered by a list of touristic places visited. In total, more than 192 thousand tweets were collected. We performed different analysis to describe the data, including correspondence analysis, a statistical technique which is normally applied to categorical data. The goal was to understand the sentiments and opinions expressed in those tweets. Sociedad Argentina de Informática e Investigación Operativa |
description |
Tourism in Perú has become very important, since there is a growing number of tourists arriving each year. This paper focus in understand what do English-speaking tourists consider when they visit Perú. We obtained all the tweets written in english during the year 2016, filtered by a list of touristic places visited. In total, more than 192 thousand tweets were collected. We performed different analysis to describe the data, including correspondence analysis, a statistical technique which is normally applied to categorical data. The goal was to understand the sentiments and opinions expressed in those tweets. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Resumen http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/72096 |
url |
http://sedici.unlp.edu.ar/handle/10915/72096 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2618-3196 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 9-10 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260309920710656 |
score |
13.13397 |