A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change

Autores
Marten, Juan; Delbianco, Fernando Andrés; Tohmé, Fernando Abel; Maguitman, Ana Gabriela
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Social media platforms like Twitter (now X) provide a global forum for discussing ideas. In this work, we propose a novel methodology for detecting causal relationships in online discourse. Our approach integrates multiple causal inference techniques to analyze how public sentiment and discourse evolve in response to key events and influential figures, using five causal detection methods: Direct-LiNGAM, PC, PCMCI, VAR, and stochastic causality. The datasets contain variables, such as different topics, sentiments, and real-world events, among which we seek to detect causal relationships at different frequencies. The proposed methodology is applied to climate change opinions and data, offering insights into the causal relationships among public sentiment, specific topics, and natural disasters. This approach provides a framework for analyzing various causal questions. In the specific case of climate change, we can hypothesize that a surge in discussions on a specific topic consistently precedes a change in overall sentiment, level of aggressiveness, or the proportion of users expressing certain stances. We can also conjecture that real-world events, like natural disasters and the rise to power of politicians leaning towards climate change denial, may have a noticeable impact on the discussion on social media. We illustrate how the proposed methodology can be applied to examine these questions by combining datasets on tweets and climate disasters.
Fil: Marten, Juan. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Delbianco, Fernando Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina
Fil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Materia
Causal Analysis
Climate Change
Opinion MIning
Topic Mining
Social media mining
Sentiment analysis
Stochastic Cusality
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/265838

id CONICETDig_6b66fb2d892b8faf3e5358eac73c9f2e
oai_identifier_str oai:ri.conicet.gov.ar:11336/265838
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate changeMarten, JuanDelbianco, Fernando AndrésTohmé, Fernando AbelMaguitman, Ana GabrielaCausal AnalysisClimate ChangeOpinion MIningTopic MiningSocial media miningSentiment analysisStochastic Cusalityhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Social media platforms like Twitter (now X) provide a global forum for discussing ideas. In this work, we propose a novel methodology for detecting causal relationships in online discourse. Our approach integrates multiple causal inference techniques to analyze how public sentiment and discourse evolve in response to key events and influential figures, using five causal detection methods: Direct-LiNGAM, PC, PCMCI, VAR, and stochastic causality. The datasets contain variables, such as different topics, sentiments, and real-world events, among which we seek to detect causal relationships at different frequencies. The proposed methodology is applied to climate change opinions and data, offering insights into the causal relationships among public sentiment, specific topics, and natural disasters. This approach provides a framework for analyzing various causal questions. In the specific case of climate change, we can hypothesize that a surge in discussions on a specific topic consistently precedes a change in overall sentiment, level of aggressiveness, or the proportion of users expressing certain stances. We can also conjecture that real-world events, like natural disasters and the rise to power of politicians leaning towards climate change denial, may have a noticeable impact on the discussion on social media. We illustrate how the proposed methodology can be applied to examine these questions by combining datasets on tweets and climate disasters.Fil: Marten, Juan. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: Delbianco, Fernando Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; ArgentinaFil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; ArgentinaFil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaPeerJ2025-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265838Marten, Juan; Delbianco, Fernando Andrés; Tohmé, Fernando Abel; Maguitman, Ana Gabriela; A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change; PeerJ; PeerJ Computer Science; 11; 6-2025; 1-262376-5992CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://peerj.com/articles/cs-2964info:eu-repo/semantics/altIdentifier/doi/10.7717/peerj-cs.2964info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:51:09Zoai:ri.conicet.gov.ar:11336/265838instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:51:09.45CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change
title A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change
spellingShingle A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change
Marten, Juan
Causal Analysis
Climate Change
Opinion MIning
Topic Mining
Social media mining
Sentiment analysis
Stochastic Cusality
title_short A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change
title_full A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change
title_fullStr A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change
title_full_unstemmed A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change
title_sort A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change
dc.creator.none.fl_str_mv Marten, Juan
Delbianco, Fernando Andrés
Tohmé, Fernando Abel
Maguitman, Ana Gabriela
author Marten, Juan
author_facet Marten, Juan
Delbianco, Fernando Andrés
Tohmé, Fernando Abel
Maguitman, Ana Gabriela
author_role author
author2 Delbianco, Fernando Andrés
Tohmé, Fernando Abel
Maguitman, Ana Gabriela
author2_role author
author
author
dc.subject.none.fl_str_mv Causal Analysis
Climate Change
Opinion MIning
Topic Mining
Social media mining
Sentiment analysis
Stochastic Cusality
topic Causal Analysis
Climate Change
Opinion MIning
Topic Mining
Social media mining
Sentiment analysis
Stochastic Cusality
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Social media platforms like Twitter (now X) provide a global forum for discussing ideas. In this work, we propose a novel methodology for detecting causal relationships in online discourse. Our approach integrates multiple causal inference techniques to analyze how public sentiment and discourse evolve in response to key events and influential figures, using five causal detection methods: Direct-LiNGAM, PC, PCMCI, VAR, and stochastic causality. The datasets contain variables, such as different topics, sentiments, and real-world events, among which we seek to detect causal relationships at different frequencies. The proposed methodology is applied to climate change opinions and data, offering insights into the causal relationships among public sentiment, specific topics, and natural disasters. This approach provides a framework for analyzing various causal questions. In the specific case of climate change, we can hypothesize that a surge in discussions on a specific topic consistently precedes a change in overall sentiment, level of aggressiveness, or the proportion of users expressing certain stances. We can also conjecture that real-world events, like natural disasters and the rise to power of politicians leaning towards climate change denial, may have a noticeable impact on the discussion on social media. We illustrate how the proposed methodology can be applied to examine these questions by combining datasets on tweets and climate disasters.
Fil: Marten, Juan. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Delbianco, Fernando Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina
Fil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
description Social media platforms like Twitter (now X) provide a global forum for discussing ideas. In this work, we propose a novel methodology for detecting causal relationships in online discourse. Our approach integrates multiple causal inference techniques to analyze how public sentiment and discourse evolve in response to key events and influential figures, using five causal detection methods: Direct-LiNGAM, PC, PCMCI, VAR, and stochastic causality. The datasets contain variables, such as different topics, sentiments, and real-world events, among which we seek to detect causal relationships at different frequencies. The proposed methodology is applied to climate change opinions and data, offering insights into the causal relationships among public sentiment, specific topics, and natural disasters. This approach provides a framework for analyzing various causal questions. In the specific case of climate change, we can hypothesize that a surge in discussions on a specific topic consistently precedes a change in overall sentiment, level of aggressiveness, or the proportion of users expressing certain stances. We can also conjecture that real-world events, like natural disasters and the rise to power of politicians leaning towards climate change denial, may have a noticeable impact on the discussion on social media. We illustrate how the proposed methodology can be applied to examine these questions by combining datasets on tweets and climate disasters.
publishDate 2025
dc.date.none.fl_str_mv 2025-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/265838
Marten, Juan; Delbianco, Fernando Andrés; Tohmé, Fernando Abel; Maguitman, Ana Gabriela; A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change; PeerJ; PeerJ Computer Science; 11; 6-2025; 1-26
2376-5992
CONICET Digital
CONICET
url http://hdl.handle.net/11336/265838
identifier_str_mv Marten, Juan; Delbianco, Fernando Andrés; Tohmé, Fernando Abel; Maguitman, Ana Gabriela; A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change; PeerJ; PeerJ Computer Science; 11; 6-2025; 1-26
2376-5992
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://peerj.com/articles/cs-2964
info:eu-repo/semantics/altIdentifier/doi/10.7717/peerj-cs.2964
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv PeerJ
publisher.none.fl_str_mv PeerJ
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083037342728192
score 13.22299