A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change
- Autores
- Marten, Juan; Delbianco, Fernando Andrés; Tohmé, Fernando Abel; Maguitman, Ana Gabriela
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Social media platforms like Twitter (now X) provide a global forum for discussing ideas. In this work, we propose a novel methodology for detecting causal relationships in online discourse. Our approach integrates multiple causal inference techniques to analyze how public sentiment and discourse evolve in response to key events and influential figures, using five causal detection methods: Direct-LiNGAM, PC, PCMCI, VAR, and stochastic causality. The datasets contain variables, such as different topics, sentiments, and real-world events, among which we seek to detect causal relationships at different frequencies. The proposed methodology is applied to climate change opinions and data, offering insights into the causal relationships among public sentiment, specific topics, and natural disasters. This approach provides a framework for analyzing various causal questions. In the specific case of climate change, we can hypothesize that a surge in discussions on a specific topic consistently precedes a change in overall sentiment, level of aggressiveness, or the proportion of users expressing certain stances. We can also conjecture that real-world events, like natural disasters and the rise to power of politicians leaning towards climate change denial, may have a noticeable impact on the discussion on social media. We illustrate how the proposed methodology can be applied to examine these questions by combining datasets on tweets and climate disasters.
Fil: Marten, Juan. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Delbianco, Fernando Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina
Fil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina - Materia
-
Causal Analysis
Climate Change
Opinion MIning
Topic Mining
Social media mining
Sentiment analysis
Stochastic Cusality - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/265838
Ver los metadatos del registro completo
id |
CONICETDig_6b66fb2d892b8faf3e5358eac73c9f2e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/265838 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate changeMarten, JuanDelbianco, Fernando AndrésTohmé, Fernando AbelMaguitman, Ana GabrielaCausal AnalysisClimate ChangeOpinion MIningTopic MiningSocial media miningSentiment analysisStochastic Cusalityhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Social media platforms like Twitter (now X) provide a global forum for discussing ideas. In this work, we propose a novel methodology for detecting causal relationships in online discourse. Our approach integrates multiple causal inference techniques to analyze how public sentiment and discourse evolve in response to key events and influential figures, using five causal detection methods: Direct-LiNGAM, PC, PCMCI, VAR, and stochastic causality. The datasets contain variables, such as different topics, sentiments, and real-world events, among which we seek to detect causal relationships at different frequencies. The proposed methodology is applied to climate change opinions and data, offering insights into the causal relationships among public sentiment, specific topics, and natural disasters. This approach provides a framework for analyzing various causal questions. In the specific case of climate change, we can hypothesize that a surge in discussions on a specific topic consistently precedes a change in overall sentiment, level of aggressiveness, or the proportion of users expressing certain stances. We can also conjecture that real-world events, like natural disasters and the rise to power of politicians leaning towards climate change denial, may have a noticeable impact on the discussion on social media. We illustrate how the proposed methodology can be applied to examine these questions by combining datasets on tweets and climate disasters.Fil: Marten, Juan. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: Delbianco, Fernando Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; ArgentinaFil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; ArgentinaFil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaPeerJ2025-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265838Marten, Juan; Delbianco, Fernando Andrés; Tohmé, Fernando Abel; Maguitman, Ana Gabriela; A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change; PeerJ; PeerJ Computer Science; 11; 6-2025; 1-262376-5992CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://peerj.com/articles/cs-2964info:eu-repo/semantics/altIdentifier/doi/10.7717/peerj-cs.2964info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:51:09Zoai:ri.conicet.gov.ar:11336/265838instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:51:09.45CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change |
title |
A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change |
spellingShingle |
A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change Marten, Juan Causal Analysis Climate Change Opinion MIning Topic Mining Social media mining Sentiment analysis Stochastic Cusality |
title_short |
A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change |
title_full |
A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change |
title_fullStr |
A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change |
title_full_unstemmed |
A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change |
title_sort |
A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change |
dc.creator.none.fl_str_mv |
Marten, Juan Delbianco, Fernando Andrés Tohmé, Fernando Abel Maguitman, Ana Gabriela |
author |
Marten, Juan |
author_facet |
Marten, Juan Delbianco, Fernando Andrés Tohmé, Fernando Abel Maguitman, Ana Gabriela |
author_role |
author |
author2 |
Delbianco, Fernando Andrés Tohmé, Fernando Abel Maguitman, Ana Gabriela |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Causal Analysis Climate Change Opinion MIning Topic Mining Social media mining Sentiment analysis Stochastic Cusality |
topic |
Causal Analysis Climate Change Opinion MIning Topic Mining Social media mining Sentiment analysis Stochastic Cusality |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Social media platforms like Twitter (now X) provide a global forum for discussing ideas. In this work, we propose a novel methodology for detecting causal relationships in online discourse. Our approach integrates multiple causal inference techniques to analyze how public sentiment and discourse evolve in response to key events and influential figures, using five causal detection methods: Direct-LiNGAM, PC, PCMCI, VAR, and stochastic causality. The datasets contain variables, such as different topics, sentiments, and real-world events, among which we seek to detect causal relationships at different frequencies. The proposed methodology is applied to climate change opinions and data, offering insights into the causal relationships among public sentiment, specific topics, and natural disasters. This approach provides a framework for analyzing various causal questions. In the specific case of climate change, we can hypothesize that a surge in discussions on a specific topic consistently precedes a change in overall sentiment, level of aggressiveness, or the proportion of users expressing certain stances. We can also conjecture that real-world events, like natural disasters and the rise to power of politicians leaning towards climate change denial, may have a noticeable impact on the discussion on social media. We illustrate how the proposed methodology can be applied to examine these questions by combining datasets on tweets and climate disasters. Fil: Marten, Juan. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina Fil: Delbianco, Fernando Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina Fil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina |
description |
Social media platforms like Twitter (now X) provide a global forum for discussing ideas. In this work, we propose a novel methodology for detecting causal relationships in online discourse. Our approach integrates multiple causal inference techniques to analyze how public sentiment and discourse evolve in response to key events and influential figures, using five causal detection methods: Direct-LiNGAM, PC, PCMCI, VAR, and stochastic causality. The datasets contain variables, such as different topics, sentiments, and real-world events, among which we seek to detect causal relationships at different frequencies. The proposed methodology is applied to climate change opinions and data, offering insights into the causal relationships among public sentiment, specific topics, and natural disasters. This approach provides a framework for analyzing various causal questions. In the specific case of climate change, we can hypothesize that a surge in discussions on a specific topic consistently precedes a change in overall sentiment, level of aggressiveness, or the proportion of users expressing certain stances. We can also conjecture that real-world events, like natural disasters and the rise to power of politicians leaning towards climate change denial, may have a noticeable impact on the discussion on social media. We illustrate how the proposed methodology can be applied to examine these questions by combining datasets on tweets and climate disasters. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/265838 Marten, Juan; Delbianco, Fernando Andrés; Tohmé, Fernando Abel; Maguitman, Ana Gabriela; A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change; PeerJ; PeerJ Computer Science; 11; 6-2025; 1-26 2376-5992 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/265838 |
identifier_str_mv |
Marten, Juan; Delbianco, Fernando Andrés; Tohmé, Fernando Abel; Maguitman, Ana Gabriela; A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change; PeerJ; PeerJ Computer Science; 11; 6-2025; 1-26 2376-5992 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://peerj.com/articles/cs-2964 info:eu-repo/semantics/altIdentifier/doi/10.7717/peerj-cs.2964 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
PeerJ |
publisher.none.fl_str_mv |
PeerJ |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083037342728192 |
score |
13.22299 |