Assessing causality among topics and sentiments: The case of the G20 discussion on Twitter

Autores
Fonseca, Mauro; Delbianco, Fernando Andrés; Maguitman, Ana Gabriela; Soto, Axel Juan
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Although the identification of topics and sentiments from social media content has attracted substantial research, little work has been carried out on the extraction of causal relationships among those topics and sentiments. This article proposes a methodology aimed at building a causal graph where nodes represent topics and emotions extracted from social media users? posts. To illustrate the proposed methodology, we collected a large multi-year dataset of tweets related to different editions of the G20 summit, which was locally indexed for further analysis. Topic-relevant queries are crafted from phrases extracted by experts from G20 output documents on four main recurring topics, namely government, society, environment and health and economics. Subsequently, sentiments are identified on the retrieved tweets using a lexicon based on Plutchik?s wheel of emotions. Finally, a causality test that uses stochastic dominance is applied to build a causal graph among topics and emotions by exploiting the asymmetries of explaining a variable from other variables. The applied causality discovery process relies on observational data only and does not require any assumptions of linearity, parametric definitions or temporal precedence. In our analysis, we observe that although the time series of topics and emotions always show high correlation coefficients, stochastic causality provides a means to tell apart causal relationships from other forms of associations. The proposed methodology can be applied to better understand social behaviour on social media, offering support to decision and policy making and their communication by government leaders.
Fil: Fonseca, Mauro. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Delbianco, Fernando Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina
Fil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Materia
CASUALITY
G20
SENTIMENT ANALYSIS
SOCIAL MEDIA
STOCHASTIC DOMINACE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/211125

id CONICETDig_88cd0dbd37fb3dfc5b2d063f34a9ceff
oai_identifier_str oai:ri.conicet.gov.ar:11336/211125
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Assessing causality among topics and sentiments: The case of the G20 discussion on TwitterFonseca, MauroDelbianco, Fernando AndrésMaguitman, Ana GabrielaSoto, Axel JuanCASUALITYG20SENTIMENT ANALYSISSOCIAL MEDIASTOCHASTIC DOMINACEhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Although the identification of topics and sentiments from social media content has attracted substantial research, little work has been carried out on the extraction of causal relationships among those topics and sentiments. This article proposes a methodology aimed at building a causal graph where nodes represent topics and emotions extracted from social media users? posts. To illustrate the proposed methodology, we collected a large multi-year dataset of tweets related to different editions of the G20 summit, which was locally indexed for further analysis. Topic-relevant queries are crafted from phrases extracted by experts from G20 output documents on four main recurring topics, namely government, society, environment and health and economics. Subsequently, sentiments are identified on the retrieved tweets using a lexicon based on Plutchik?s wheel of emotions. Finally, a causality test that uses stochastic dominance is applied to build a causal graph among topics and emotions by exploiting the asymmetries of explaining a variable from other variables. The applied causality discovery process relies on observational data only and does not require any assumptions of linearity, parametric definitions or temporal precedence. In our analysis, we observe that although the time series of topics and emotions always show high correlation coefficients, stochastic causality provides a means to tell apart causal relationships from other forms of associations. The proposed methodology can be applied to better understand social behaviour on social media, offering support to decision and policy making and their communication by government leaders.Fil: Fonseca, Mauro. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: Delbianco, Fernando Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; ArgentinaFil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaSage Publications Ltd2023-03-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/211125Fonseca, Mauro; Delbianco, Fernando Andrés; Maguitman, Ana Gabriela; Soto, Axel Juan; Assessing causality among topics and sentiments: The case of the G20 discussion on Twitter; Sage Publications Ltd; Journal Of Information Science; 30-3-2023; 1-160165-55151741-6485CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.sagepub.com/doi/10.1177/01655515231160034info:eu-repo/semantics/altIdentifier/doi/10.1177/01655515231160034info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:46Zoai:ri.conicet.gov.ar:11336/211125instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:46.786CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Assessing causality among topics and sentiments: The case of the G20 discussion on Twitter
title Assessing causality among topics and sentiments: The case of the G20 discussion on Twitter
spellingShingle Assessing causality among topics and sentiments: The case of the G20 discussion on Twitter
Fonseca, Mauro
CASUALITY
G20
SENTIMENT ANALYSIS
SOCIAL MEDIA
STOCHASTIC DOMINACE
title_short Assessing causality among topics and sentiments: The case of the G20 discussion on Twitter
title_full Assessing causality among topics and sentiments: The case of the G20 discussion on Twitter
title_fullStr Assessing causality among topics and sentiments: The case of the G20 discussion on Twitter
title_full_unstemmed Assessing causality among topics and sentiments: The case of the G20 discussion on Twitter
title_sort Assessing causality among topics and sentiments: The case of the G20 discussion on Twitter
dc.creator.none.fl_str_mv Fonseca, Mauro
Delbianco, Fernando Andrés
Maguitman, Ana Gabriela
Soto, Axel Juan
author Fonseca, Mauro
author_facet Fonseca, Mauro
Delbianco, Fernando Andrés
Maguitman, Ana Gabriela
Soto, Axel Juan
author_role author
author2 Delbianco, Fernando Andrés
Maguitman, Ana Gabriela
Soto, Axel Juan
author2_role author
author
author
dc.subject.none.fl_str_mv CASUALITY
G20
SENTIMENT ANALYSIS
SOCIAL MEDIA
STOCHASTIC DOMINACE
topic CASUALITY
G20
SENTIMENT ANALYSIS
SOCIAL MEDIA
STOCHASTIC DOMINACE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Although the identification of topics and sentiments from social media content has attracted substantial research, little work has been carried out on the extraction of causal relationships among those topics and sentiments. This article proposes a methodology aimed at building a causal graph where nodes represent topics and emotions extracted from social media users? posts. To illustrate the proposed methodology, we collected a large multi-year dataset of tweets related to different editions of the G20 summit, which was locally indexed for further analysis. Topic-relevant queries are crafted from phrases extracted by experts from G20 output documents on four main recurring topics, namely government, society, environment and health and economics. Subsequently, sentiments are identified on the retrieved tweets using a lexicon based on Plutchik?s wheel of emotions. Finally, a causality test that uses stochastic dominance is applied to build a causal graph among topics and emotions by exploiting the asymmetries of explaining a variable from other variables. The applied causality discovery process relies on observational data only and does not require any assumptions of linearity, parametric definitions or temporal precedence. In our analysis, we observe that although the time series of topics and emotions always show high correlation coefficients, stochastic causality provides a means to tell apart causal relationships from other forms of associations. The proposed methodology can be applied to better understand social behaviour on social media, offering support to decision and policy making and their communication by government leaders.
Fil: Fonseca, Mauro. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Delbianco, Fernando Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina
Fil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
description Although the identification of topics and sentiments from social media content has attracted substantial research, little work has been carried out on the extraction of causal relationships among those topics and sentiments. This article proposes a methodology aimed at building a causal graph where nodes represent topics and emotions extracted from social media users? posts. To illustrate the proposed methodology, we collected a large multi-year dataset of tweets related to different editions of the G20 summit, which was locally indexed for further analysis. Topic-relevant queries are crafted from phrases extracted by experts from G20 output documents on four main recurring topics, namely government, society, environment and health and economics. Subsequently, sentiments are identified on the retrieved tweets using a lexicon based on Plutchik?s wheel of emotions. Finally, a causality test that uses stochastic dominance is applied to build a causal graph among topics and emotions by exploiting the asymmetries of explaining a variable from other variables. The applied causality discovery process relies on observational data only and does not require any assumptions of linearity, parametric definitions or temporal precedence. In our analysis, we observe that although the time series of topics and emotions always show high correlation coefficients, stochastic causality provides a means to tell apart causal relationships from other forms of associations. The proposed methodology can be applied to better understand social behaviour on social media, offering support to decision and policy making and their communication by government leaders.
publishDate 2023
dc.date.none.fl_str_mv 2023-03-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/211125
Fonseca, Mauro; Delbianco, Fernando Andrés; Maguitman, Ana Gabriela; Soto, Axel Juan; Assessing causality among topics and sentiments: The case of the G20 discussion on Twitter; Sage Publications Ltd; Journal Of Information Science; 30-3-2023; 1-16
0165-5515
1741-6485
CONICET Digital
CONICET
url http://hdl.handle.net/11336/211125
identifier_str_mv Fonseca, Mauro; Delbianco, Fernando Andrés; Maguitman, Ana Gabriela; Soto, Axel Juan; Assessing causality among topics and sentiments: The case of the G20 discussion on Twitter; Sage Publications Ltd; Journal Of Information Science; 30-3-2023; 1-16
0165-5515
1741-6485
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.sagepub.com/doi/10.1177/01655515231160034
info:eu-repo/semantics/altIdentifier/doi/10.1177/01655515231160034
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Sage Publications Ltd
publisher.none.fl_str_mv Sage Publications Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269052596125696
score 13.13397