Geometry of unitary orbits of pinching operators

Autores
Chiumiento, Eduardo Hernán; Di Iorio y Lucero, M. E.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let I be a symmetrically-normed ideal of the space of bounded operators acting on a Hilbert space H. Let {pi}1w(1≤w≤∞) be a family of mutually orthogonal projections on H. The pinching operator associated with the former family of projections is given by P:I→I,P(x)=∑i=1wpixpi. Let UI denote the Banach-Lie group of the unitary operators whose difference with the identity belongs to I. We study geometric properties of the orbit UI(P)={LuPLu*:u∈UI}, where Lu is the left representation of UI on the algebra B(I) of bounded operators acting on I. The results include necessary and sufficient conditions for UI(P) to be a submanifold of B(I). Special features arise in the case of the ideal K of compact operators. In general, UK(P) turns out to be a non complemented submanifold of B(K). We find a necessary and sufficient condition for UK(P) to have complemented tangent spaces in B(K). We also show that UI(P) is a covering space of another orbit of pinching operators.
Facultad de Ciencias Exactas
Materia
Matemática
Covering space
Left representation
Pinching operator
Submanifold
Symmetrically-normed ideal
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/85541

id SEDICI_01e8871db98cf0357b3feb9c3b6e1fcd
oai_identifier_str oai:sedici.unlp.edu.ar:10915/85541
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Geometry of unitary orbits of pinching operatorsChiumiento, Eduardo HernánDi Iorio y Lucero, M. E.MatemáticaCovering spaceLeft representationPinching operatorSubmanifoldSymmetrically-normed idealLet I be a symmetrically-normed ideal of the space of bounded operators acting on a Hilbert space H. Let {pi}1w(1≤w≤∞) be a family of mutually orthogonal projections on H. The pinching operator associated with the former family of projections is given by P:I→I,P(x)=∑i=1wpixpi. Let UI denote the Banach-Lie group of the unitary operators whose difference with the identity belongs to I. We study geometric properties of the orbit UI(P)={LuPLu*:u∈UI}, where Lu is the left representation of UI on the algebra B(I) of bounded operators acting on I. The results include necessary and sufficient conditions for UI(P) to be a submanifold of B(I). Special features arise in the case of the ideal K of compact operators. In general, UK(P) turns out to be a non complemented submanifold of B(K). We find a necessary and sufficient condition for UK(P) to have complemented tangent spaces in B(K). We also show that UI(P) is a covering space of another orbit of pinching operators.Facultad de Ciencias Exactas2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf103-118http://sedici.unlp.edu.ar/handle/10915/85541enginfo:eu-repo/semantics/altIdentifier/issn/0022-247Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.12.060info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:57:18Zoai:sedici.unlp.edu.ar:10915/85541Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:57:18.97SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Geometry of unitary orbits of pinching operators
title Geometry of unitary orbits of pinching operators
spellingShingle Geometry of unitary orbits of pinching operators
Chiumiento, Eduardo Hernán
Matemática
Covering space
Left representation
Pinching operator
Submanifold
Symmetrically-normed ideal
title_short Geometry of unitary orbits of pinching operators
title_full Geometry of unitary orbits of pinching operators
title_fullStr Geometry of unitary orbits of pinching operators
title_full_unstemmed Geometry of unitary orbits of pinching operators
title_sort Geometry of unitary orbits of pinching operators
dc.creator.none.fl_str_mv Chiumiento, Eduardo Hernán
Di Iorio y Lucero, M. E.
author Chiumiento, Eduardo Hernán
author_facet Chiumiento, Eduardo Hernán
Di Iorio y Lucero, M. E.
author_role author
author2 Di Iorio y Lucero, M. E.
author2_role author
dc.subject.none.fl_str_mv Matemática
Covering space
Left representation
Pinching operator
Submanifold
Symmetrically-normed ideal
topic Matemática
Covering space
Left representation
Pinching operator
Submanifold
Symmetrically-normed ideal
dc.description.none.fl_txt_mv Let I be a symmetrically-normed ideal of the space of bounded operators acting on a Hilbert space H. Let {pi}1w(1≤w≤∞) be a family of mutually orthogonal projections on H. The pinching operator associated with the former family of projections is given by P:I→I,P(x)=∑i=1wpixpi. Let UI denote the Banach-Lie group of the unitary operators whose difference with the identity belongs to I. We study geometric properties of the orbit UI(P)={LuPLu*:u∈UI}, where Lu is the left representation of UI on the algebra B(I) of bounded operators acting on I. The results include necessary and sufficient conditions for UI(P) to be a submanifold of B(I). Special features arise in the case of the ideal K of compact operators. In general, UK(P) turns out to be a non complemented submanifold of B(K). We find a necessary and sufficient condition for UK(P) to have complemented tangent spaces in B(K). We also show that UI(P) is a covering space of another orbit of pinching operators.
Facultad de Ciencias Exactas
description Let I be a symmetrically-normed ideal of the space of bounded operators acting on a Hilbert space H. Let {pi}1w(1≤w≤∞) be a family of mutually orthogonal projections on H. The pinching operator associated with the former family of projections is given by P:I→I,P(x)=∑i=1wpixpi. Let UI denote the Banach-Lie group of the unitary operators whose difference with the identity belongs to I. We study geometric properties of the orbit UI(P)={LuPLu*:u∈UI}, where Lu is the left representation of UI on the algebra B(I) of bounded operators acting on I. The results include necessary and sufficient conditions for UI(P) to be a submanifold of B(I). Special features arise in the case of the ideal K of compact operators. In general, UK(P) turns out to be a non complemented submanifold of B(K). We find a necessary and sufficient condition for UK(P) to have complemented tangent spaces in B(K). We also show that UI(P) is a covering space of another orbit of pinching operators.
publishDate 2013
dc.date.none.fl_str_mv 2013
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/85541
url http://sedici.unlp.edu.ar/handle/10915/85541
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0022-247X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.12.060
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
103-118
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783186043928576
score 12.982451