Geometry of unitary orbits of pinching operators
- Autores
- Chiumiento, Eduardo Hernán; Di Iorio y Lucero, M. E.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let I be a symmetrically-normed ideal of the space of bounded operators acting on a Hilbert space H. Let {pi}1w(1≤w≤∞) be a family of mutually orthogonal projections on H. The pinching operator associated with the former family of projections is given by P:I→I,P(x)=∑i=1wpixpi. Let UI denote the Banach-Lie group of the unitary operators whose difference with the identity belongs to I. We study geometric properties of the orbit UI(P)={LuPLu*:u∈UI}, where Lu is the left representation of UI on the algebra B(I) of bounded operators acting on I. The results include necessary and sufficient conditions for UI(P) to be a submanifold of B(I). Special features arise in the case of the ideal K of compact operators. In general, UK(P) turns out to be a non complemented submanifold of B(K). We find a necessary and sufficient condition for UK(P) to have complemented tangent spaces in B(K). We also show that UI(P) is a covering space of another orbit of pinching operators.
Facultad de Ciencias Exactas - Materia
-
Matemática
Covering space
Left representation
Pinching operator
Submanifold
Symmetrically-normed ideal - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/85541
Ver los metadatos del registro completo
| id |
SEDICI_01e8871db98cf0357b3feb9c3b6e1fcd |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/85541 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Geometry of unitary orbits of pinching operatorsChiumiento, Eduardo HernánDi Iorio y Lucero, M. E.MatemáticaCovering spaceLeft representationPinching operatorSubmanifoldSymmetrically-normed idealLet I be a symmetrically-normed ideal of the space of bounded operators acting on a Hilbert space H. Let {pi}1w(1≤w≤∞) be a family of mutually orthogonal projections on H. The pinching operator associated with the former family of projections is given by P:I→I,P(x)=∑i=1wpixpi. Let UI denote the Banach-Lie group of the unitary operators whose difference with the identity belongs to I. We study geometric properties of the orbit UI(P)={LuPLu*:u∈UI}, where Lu is the left representation of UI on the algebra B(I) of bounded operators acting on I. The results include necessary and sufficient conditions for UI(P) to be a submanifold of B(I). Special features arise in the case of the ideal K of compact operators. In general, UK(P) turns out to be a non complemented submanifold of B(K). We find a necessary and sufficient condition for UK(P) to have complemented tangent spaces in B(K). We also show that UI(P) is a covering space of another orbit of pinching operators.Facultad de Ciencias Exactas2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf103-118http://sedici.unlp.edu.ar/handle/10915/85541enginfo:eu-repo/semantics/altIdentifier/issn/0022-247Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.12.060info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:57:18Zoai:sedici.unlp.edu.ar:10915/85541Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:57:18.97SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Geometry of unitary orbits of pinching operators |
| title |
Geometry of unitary orbits of pinching operators |
| spellingShingle |
Geometry of unitary orbits of pinching operators Chiumiento, Eduardo Hernán Matemática Covering space Left representation Pinching operator Submanifold Symmetrically-normed ideal |
| title_short |
Geometry of unitary orbits of pinching operators |
| title_full |
Geometry of unitary orbits of pinching operators |
| title_fullStr |
Geometry of unitary orbits of pinching operators |
| title_full_unstemmed |
Geometry of unitary orbits of pinching operators |
| title_sort |
Geometry of unitary orbits of pinching operators |
| dc.creator.none.fl_str_mv |
Chiumiento, Eduardo Hernán Di Iorio y Lucero, M. E. |
| author |
Chiumiento, Eduardo Hernán |
| author_facet |
Chiumiento, Eduardo Hernán Di Iorio y Lucero, M. E. |
| author_role |
author |
| author2 |
Di Iorio y Lucero, M. E. |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Matemática Covering space Left representation Pinching operator Submanifold Symmetrically-normed ideal |
| topic |
Matemática Covering space Left representation Pinching operator Submanifold Symmetrically-normed ideal |
| dc.description.none.fl_txt_mv |
Let I be a symmetrically-normed ideal of the space of bounded operators acting on a Hilbert space H. Let {pi}1w(1≤w≤∞) be a family of mutually orthogonal projections on H. The pinching operator associated with the former family of projections is given by P:I→I,P(x)=∑i=1wpixpi. Let UI denote the Banach-Lie group of the unitary operators whose difference with the identity belongs to I. We study geometric properties of the orbit UI(P)={LuPLu*:u∈UI}, where Lu is the left representation of UI on the algebra B(I) of bounded operators acting on I. The results include necessary and sufficient conditions for UI(P) to be a submanifold of B(I). Special features arise in the case of the ideal K of compact operators. In general, UK(P) turns out to be a non complemented submanifold of B(K). We find a necessary and sufficient condition for UK(P) to have complemented tangent spaces in B(K). We also show that UI(P) is a covering space of another orbit of pinching operators. Facultad de Ciencias Exactas |
| description |
Let I be a symmetrically-normed ideal of the space of bounded operators acting on a Hilbert space H. Let {pi}1w(1≤w≤∞) be a family of mutually orthogonal projections on H. The pinching operator associated with the former family of projections is given by P:I→I,P(x)=∑i=1wpixpi. Let UI denote the Banach-Lie group of the unitary operators whose difference with the identity belongs to I. We study geometric properties of the orbit UI(P)={LuPLu*:u∈UI}, where Lu is the left representation of UI on the algebra B(I) of bounded operators acting on I. The results include necessary and sufficient conditions for UI(P) to be a submanifold of B(I). Special features arise in the case of the ideal K of compact operators. In general, UK(P) turns out to be a non complemented submanifold of B(K). We find a necessary and sufficient condition for UK(P) to have complemented tangent spaces in B(K). We also show that UI(P) is a covering space of another orbit of pinching operators. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/85541 |
| url |
http://sedici.unlp.edu.ar/handle/10915/85541 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0022-247X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.12.060 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 103-118 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783186043928576 |
| score |
12.982451 |