On the geometry of normal projections in Krein spaces

Autores
Chiumiento, Eduardo Hernan; Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let H be a Krein space with fundamental symmetry J. Along this paper, the geometric structure of the set of J-normal projections Q is studied. The group of J-unitary operators UJ naturally acts on Q. Each orbit of this action turns out to be an analytic homogeneous space of UJ, and a connected component of Q. The relationship between Q and the set E of J-selfadjoint projections is analized: both sets are analytic submanifolds of L(H) and there is a natural real analytic submersion from Q onto E, namely Q↦QQ#. The range of a J-normal projection is always a pseudo-regular subspace. Then, for a fixed pseudo-regular subspace S, it is proved that the set of J-normal projections onto S is a covering space of the subset of J-normal projections onto S with fixed regular part.
Fil: Chiumiento, Eduardo Hernan. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martinez Peria, Francisco Dardo. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Normal operator
Projection
Krein space
Submanifold
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17759

id CONICETDig_7b0014a0028f4ef4eb1557e05978cc87
oai_identifier_str oai:ri.conicet.gov.ar:11336/17759
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the geometry of normal projections in Krein spacesChiumiento, Eduardo HernanMaestripieri, Alejandra LauraMartinez Peria, Francisco DardoNormal operatorProjectionKrein spaceSubmanifoldhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H be a Krein space with fundamental symmetry J. Along this paper, the geometric structure of the set of J-normal projections Q is studied. The group of J-unitary operators UJ naturally acts on Q. Each orbit of this action turns out to be an analytic homogeneous space of UJ, and a connected component of Q. The relationship between Q and the set E of J-selfadjoint projections is analized: both sets are analytic submanifolds of L(H) and there is a natural real analytic submersion from Q onto E, namely Q↦QQ#. The range of a J-normal projection is always a pseudo-regular subspace. Then, for a fixed pseudo-regular subspace S, it is proved that the set of J-normal projections onto S is a covering space of the subset of J-normal projections onto S with fixed regular part.Fil: Chiumiento, Eduardo Hernan. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martinez Peria, Francisco Dardo. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaTheta Foundation2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/octet-streamapplication/pdfhttp://hdl.handle.net/11336/17759Chiumiento, Eduardo Hernan; Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; On the geometry of normal projections in Krein spaces; Theta Foundation; Journal Of Operator Theory; 74; 1; 7-2015; 75-991841-7744enginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1504.04253info:eu-repo/semantics/altIdentifier/url/http://www.mathjournals.org/jot/2015-074-001/2015-074-001-004.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.7900/jot.2014may06.2035info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:05Zoai:ri.conicet.gov.ar:11336/17759instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:05.865CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the geometry of normal projections in Krein spaces
title On the geometry of normal projections in Krein spaces
spellingShingle On the geometry of normal projections in Krein spaces
Chiumiento, Eduardo Hernan
Normal operator
Projection
Krein space
Submanifold
title_short On the geometry of normal projections in Krein spaces
title_full On the geometry of normal projections in Krein spaces
title_fullStr On the geometry of normal projections in Krein spaces
title_full_unstemmed On the geometry of normal projections in Krein spaces
title_sort On the geometry of normal projections in Krein spaces
dc.creator.none.fl_str_mv Chiumiento, Eduardo Hernan
Maestripieri, Alejandra Laura
Martinez Peria, Francisco Dardo
author Chiumiento, Eduardo Hernan
author_facet Chiumiento, Eduardo Hernan
Maestripieri, Alejandra Laura
Martinez Peria, Francisco Dardo
author_role author
author2 Maestripieri, Alejandra Laura
Martinez Peria, Francisco Dardo
author2_role author
author
dc.subject.none.fl_str_mv Normal operator
Projection
Krein space
Submanifold
topic Normal operator
Projection
Krein space
Submanifold
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let H be a Krein space with fundamental symmetry J. Along this paper, the geometric structure of the set of J-normal projections Q is studied. The group of J-unitary operators UJ naturally acts on Q. Each orbit of this action turns out to be an analytic homogeneous space of UJ, and a connected component of Q. The relationship between Q and the set E of J-selfadjoint projections is analized: both sets are analytic submanifolds of L(H) and there is a natural real analytic submersion from Q onto E, namely Q↦QQ#. The range of a J-normal projection is always a pseudo-regular subspace. Then, for a fixed pseudo-regular subspace S, it is proved that the set of J-normal projections onto S is a covering space of the subset of J-normal projections onto S with fixed regular part.
Fil: Chiumiento, Eduardo Hernan. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martinez Peria, Francisco Dardo. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Let H be a Krein space with fundamental symmetry J. Along this paper, the geometric structure of the set of J-normal projections Q is studied. The group of J-unitary operators UJ naturally acts on Q. Each orbit of this action turns out to be an analytic homogeneous space of UJ, and a connected component of Q. The relationship between Q and the set E of J-selfadjoint projections is analized: both sets are analytic submanifolds of L(H) and there is a natural real analytic submersion from Q onto E, namely Q↦QQ#. The range of a J-normal projection is always a pseudo-regular subspace. Then, for a fixed pseudo-regular subspace S, it is proved that the set of J-normal projections onto S is a covering space of the subset of J-normal projections onto S with fixed regular part.
publishDate 2015
dc.date.none.fl_str_mv 2015-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17759
Chiumiento, Eduardo Hernan; Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; On the geometry of normal projections in Krein spaces; Theta Foundation; Journal Of Operator Theory; 74; 1; 7-2015; 75-99
1841-7744
url http://hdl.handle.net/11336/17759
identifier_str_mv Chiumiento, Eduardo Hernan; Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; On the geometry of normal projections in Krein spaces; Theta Foundation; Journal Of Operator Theory; 74; 1; 7-2015; 75-99
1841-7744
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1504.04253
info:eu-repo/semantics/altIdentifier/url/http://www.mathjournals.org/jot/2015-074-001/2015-074-001-004.html
info:eu-repo/semantics/altIdentifier/doi/10.7900/jot.2014may06.2035
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/octet-stream
application/pdf
dc.publisher.none.fl_str_mv Theta Foundation
publisher.none.fl_str_mv Theta Foundation
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613326528577536
score 13.070432