On the geometry of normal projections in Krein spaces
- Autores
- Chiumiento, Eduardo Hernan; Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let H be a Krein space with fundamental symmetry J. Along this paper, the geometric structure of the set of J-normal projections Q is studied. The group of J-unitary operators UJ naturally acts on Q. Each orbit of this action turns out to be an analytic homogeneous space of UJ, and a connected component of Q. The relationship between Q and the set E of J-selfadjoint projections is analized: both sets are analytic submanifolds of L(H) and there is a natural real analytic submersion from Q onto E, namely Q↦QQ#. The range of a J-normal projection is always a pseudo-regular subspace. Then, for a fixed pseudo-regular subspace S, it is proved that the set of J-normal projections onto S is a covering space of the subset of J-normal projections onto S with fixed regular part.
Fil: Chiumiento, Eduardo Hernan. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martinez Peria, Francisco Dardo. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Normal operator
Projection
Krein space
Submanifold - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/17759
Ver los metadatos del registro completo
id |
CONICETDig_7b0014a0028f4ef4eb1557e05978cc87 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/17759 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the geometry of normal projections in Krein spacesChiumiento, Eduardo HernanMaestripieri, Alejandra LauraMartinez Peria, Francisco DardoNormal operatorProjectionKrein spaceSubmanifoldhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H be a Krein space with fundamental symmetry J. Along this paper, the geometric structure of the set of J-normal projections Q is studied. The group of J-unitary operators UJ naturally acts on Q. Each orbit of this action turns out to be an analytic homogeneous space of UJ, and a connected component of Q. The relationship between Q and the set E of J-selfadjoint projections is analized: both sets are analytic submanifolds of L(H) and there is a natural real analytic submersion from Q onto E, namely Q↦QQ#. The range of a J-normal projection is always a pseudo-regular subspace. Then, for a fixed pseudo-regular subspace S, it is proved that the set of J-normal projections onto S is a covering space of the subset of J-normal projections onto S with fixed regular part.Fil: Chiumiento, Eduardo Hernan. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martinez Peria, Francisco Dardo. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaTheta Foundation2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/octet-streamapplication/pdfhttp://hdl.handle.net/11336/17759Chiumiento, Eduardo Hernan; Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; On the geometry of normal projections in Krein spaces; Theta Foundation; Journal Of Operator Theory; 74; 1; 7-2015; 75-991841-7744enginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1504.04253info:eu-repo/semantics/altIdentifier/url/http://www.mathjournals.org/jot/2015-074-001/2015-074-001-004.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.7900/jot.2014may06.2035info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:05Zoai:ri.conicet.gov.ar:11336/17759instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:05.865CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the geometry of normal projections in Krein spaces |
title |
On the geometry of normal projections in Krein spaces |
spellingShingle |
On the geometry of normal projections in Krein spaces Chiumiento, Eduardo Hernan Normal operator Projection Krein space Submanifold |
title_short |
On the geometry of normal projections in Krein spaces |
title_full |
On the geometry of normal projections in Krein spaces |
title_fullStr |
On the geometry of normal projections in Krein spaces |
title_full_unstemmed |
On the geometry of normal projections in Krein spaces |
title_sort |
On the geometry of normal projections in Krein spaces |
dc.creator.none.fl_str_mv |
Chiumiento, Eduardo Hernan Maestripieri, Alejandra Laura Martinez Peria, Francisco Dardo |
author |
Chiumiento, Eduardo Hernan |
author_facet |
Chiumiento, Eduardo Hernan Maestripieri, Alejandra Laura Martinez Peria, Francisco Dardo |
author_role |
author |
author2 |
Maestripieri, Alejandra Laura Martinez Peria, Francisco Dardo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Normal operator Projection Krein space Submanifold |
topic |
Normal operator Projection Krein space Submanifold |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let H be a Krein space with fundamental symmetry J. Along this paper, the geometric structure of the set of J-normal projections Q is studied. The group of J-unitary operators UJ naturally acts on Q. Each orbit of this action turns out to be an analytic homogeneous space of UJ, and a connected component of Q. The relationship between Q and the set E of J-selfadjoint projections is analized: both sets are analytic submanifolds of L(H) and there is a natural real analytic submersion from Q onto E, namely Q↦QQ#. The range of a J-normal projection is always a pseudo-regular subspace. Then, for a fixed pseudo-regular subspace S, it is proved that the set of J-normal projections onto S is a covering space of the subset of J-normal projections onto S with fixed regular part. Fil: Chiumiento, Eduardo Hernan. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Martinez Peria, Francisco Dardo. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Let H be a Krein space with fundamental symmetry J. Along this paper, the geometric structure of the set of J-normal projections Q is studied. The group of J-unitary operators UJ naturally acts on Q. Each orbit of this action turns out to be an analytic homogeneous space of UJ, and a connected component of Q. The relationship between Q and the set E of J-selfadjoint projections is analized: both sets are analytic submanifolds of L(H) and there is a natural real analytic submersion from Q onto E, namely Q↦QQ#. The range of a J-normal projection is always a pseudo-regular subspace. Then, for a fixed pseudo-regular subspace S, it is proved that the set of J-normal projections onto S is a covering space of the subset of J-normal projections onto S with fixed regular part. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/17759 Chiumiento, Eduardo Hernan; Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; On the geometry of normal projections in Krein spaces; Theta Foundation; Journal Of Operator Theory; 74; 1; 7-2015; 75-99 1841-7744 |
url |
http://hdl.handle.net/11336/17759 |
identifier_str_mv |
Chiumiento, Eduardo Hernan; Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; On the geometry of normal projections in Krein spaces; Theta Foundation; Journal Of Operator Theory; 74; 1; 7-2015; 75-99 1841-7744 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1504.04253 info:eu-repo/semantics/altIdentifier/url/http://www.mathjournals.org/jot/2015-074-001/2015-074-001-004.html info:eu-repo/semantics/altIdentifier/doi/10.7900/jot.2014may06.2035 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/octet-stream application/pdf |
dc.publisher.none.fl_str_mv |
Theta Foundation |
publisher.none.fl_str_mv |
Theta Foundation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613326528577536 |
score |
13.070432 |