Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals

Autores
Chiumiento, Eduardo Hernan; Massey, Pedro Gustavo
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the Moore-Penrose inverse of perturbations by a symmetrically-normed ideal of a closed range operator on a Hilbert space. We show that the notion of essential codimension of projections gives a characterization of subsets of such perturbations in which the Moore-Penrose inverse is continuous with respect to the metric induced by the operator ideal. These subsets are maximal satisfying the continuity property, and they carry the structure of real analytic Banach manifolds, which are acted upon transitively by the Banach-Lie group consisting of invertible operators associated with the ideal. This geometric construction allows us to prove that the Moore-Penrose inverse is indeed a real bianalytic map between infinite-dimensional manifolds. We use these results to study the polar decomposition of closed range operators from a similar geometric perspective. At this point we prove that operator monotone functions are real analytic in the norm of any symmetrically-normed ideal. Finally, we show that the maps defined by the operator modulus and the polar factor in the polar decomposition of closed range operators are real analytic fiber bundles.
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
MOORE-PENROSE
POLAR DECOMPOSITION
ESSENTIAL CODIMENSION
SYMMETRICALLY-NORMED IDEAL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/245791

id CONICETDig_14709efeeb16743aa596ff4b56a0ab90
oai_identifier_str oai:ri.conicet.gov.ar:11336/245791
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator idealsChiumiento, Eduardo HernanMassey, Pedro GustavoMOORE-PENROSEPOLAR DECOMPOSITIONESSENTIAL CODIMENSIONSYMMETRICALLY-NORMED IDEALhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the Moore-Penrose inverse of perturbations by a symmetrically-normed ideal of a closed range operator on a Hilbert space. We show that the notion of essential codimension of projections gives a characterization of subsets of such perturbations in which the Moore-Penrose inverse is continuous with respect to the metric induced by the operator ideal. These subsets are maximal satisfying the continuity property, and they carry the structure of real analytic Banach manifolds, which are acted upon transitively by the Banach-Lie group consisting of invertible operators associated with the ideal. This geometric construction allows us to prove that the Moore-Penrose inverse is indeed a real bianalytic map between infinite-dimensional manifolds. We use these results to study the polar decomposition of closed range operators from a similar geometric perspective. At this point we prove that operator monotone functions are real analytic in the norm of any symmetrically-normed ideal. Finally, we show that the maps defined by the operator modulus and the polar factor in the polar decomposition of closed range operators are real analytic fiber bundles.Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaDe Gruyter2024-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/245791Chiumiento, Eduardo Hernan; Massey, Pedro Gustavo; Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals; De Gruyter; Forum Mathematicum; 5-2024; 1-270933-7741CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1515/forum-2024-0010info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/forum-2024-0010/htmlinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2312.02693info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:03:40Zoai:ri.conicet.gov.ar:11336/245791instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:03:40.248CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals
title Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals
spellingShingle Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals
Chiumiento, Eduardo Hernan
MOORE-PENROSE
POLAR DECOMPOSITION
ESSENTIAL CODIMENSION
SYMMETRICALLY-NORMED IDEAL
title_short Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals
title_full Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals
title_fullStr Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals
title_full_unstemmed Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals
title_sort Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals
dc.creator.none.fl_str_mv Chiumiento, Eduardo Hernan
Massey, Pedro Gustavo
author Chiumiento, Eduardo Hernan
author_facet Chiumiento, Eduardo Hernan
Massey, Pedro Gustavo
author_role author
author2 Massey, Pedro Gustavo
author2_role author
dc.subject.none.fl_str_mv MOORE-PENROSE
POLAR DECOMPOSITION
ESSENTIAL CODIMENSION
SYMMETRICALLY-NORMED IDEAL
topic MOORE-PENROSE
POLAR DECOMPOSITION
ESSENTIAL CODIMENSION
SYMMETRICALLY-NORMED IDEAL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the Moore-Penrose inverse of perturbations by a symmetrically-normed ideal of a closed range operator on a Hilbert space. We show that the notion of essential codimension of projections gives a characterization of subsets of such perturbations in which the Moore-Penrose inverse is continuous with respect to the metric induced by the operator ideal. These subsets are maximal satisfying the continuity property, and they carry the structure of real analytic Banach manifolds, which are acted upon transitively by the Banach-Lie group consisting of invertible operators associated with the ideal. This geometric construction allows us to prove that the Moore-Penrose inverse is indeed a real bianalytic map between infinite-dimensional manifolds. We use these results to study the polar decomposition of closed range operators from a similar geometric perspective. At this point we prove that operator monotone functions are real analytic in the norm of any symmetrically-normed ideal. Finally, we show that the maps defined by the operator modulus and the polar factor in the polar decomposition of closed range operators are real analytic fiber bundles.
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description We study the Moore-Penrose inverse of perturbations by a symmetrically-normed ideal of a closed range operator on a Hilbert space. We show that the notion of essential codimension of projections gives a characterization of subsets of such perturbations in which the Moore-Penrose inverse is continuous with respect to the metric induced by the operator ideal. These subsets are maximal satisfying the continuity property, and they carry the structure of real analytic Banach manifolds, which are acted upon transitively by the Banach-Lie group consisting of invertible operators associated with the ideal. This geometric construction allows us to prove that the Moore-Penrose inverse is indeed a real bianalytic map between infinite-dimensional manifolds. We use these results to study the polar decomposition of closed range operators from a similar geometric perspective. At this point we prove that operator monotone functions are real analytic in the norm of any symmetrically-normed ideal. Finally, we show that the maps defined by the operator modulus and the polar factor in the polar decomposition of closed range operators are real analytic fiber bundles.
publishDate 2024
dc.date.none.fl_str_mv 2024-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/245791
Chiumiento, Eduardo Hernan; Massey, Pedro Gustavo; Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals; De Gruyter; Forum Mathematicum; 5-2024; 1-27
0933-7741
CONICET Digital
CONICET
url http://hdl.handle.net/11336/245791
identifier_str_mv Chiumiento, Eduardo Hernan; Massey, Pedro Gustavo; Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals; De Gruyter; Forum Mathematicum; 5-2024; 1-27
0933-7741
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1515/forum-2024-0010
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/forum-2024-0010/html
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2312.02693
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv De Gruyter
publisher.none.fl_str_mv De Gruyter
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606344124334080
score 13.000565