Geometry of unitary orbits of pinching operators
- Autores
- Di Iorio y Lucero, María Eugenia; Chiumiento, Eduardo Hernan
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let I I be a symmetrically-normed ideal of the space of bounded operators acting on a Hilbert space H H . Let View the MathML source {pi}w1 (1≤w≤∞) (1≤w≤∞) be a family of mutually orthogonal projections on H H . The pinching operator associated with the former family of projections is given by P:I⟶I,P(x)=∑wi=1pixpi. Let UI UI denote the Banach–Lie group of the unitary operators whose difference with the identity belongs to I I . We study geometric properties of the orbit UI(P)={LuPLu∗:u∈UI}, UI(P)={LuPLu∗:u∈UI}, where Lu Lu is the left representation of UI UI on the algebra B(I) B(I) of bounded operators acting on I . The results include necessary and sufficient conditions for UI(P) to be a submanifold of B(I) . Special features arise in the case of the ideal K of compact operators. In general, UK(P) turns out to be a non complemented submanifold of B(K) . We find a necessary and sufficient condition for UK(P) to have complemented tangent spaces in B(K) . We also show that UI(P) is a covering space of another orbit of pinching operators.
Fil: Di Iorio y Lucero, María Eugenia. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina
Fil: Chiumiento, Eduardo Hernan. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina - Materia
-
Pinching Operator
Left Representation
Symmetrically Normed Ideal
Submanifold - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/3371
Ver los metadatos del registro completo
| id |
CONICETDig_0983b8e3f2d9c75fdcb1bb1043e13c38 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/3371 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Geometry of unitary orbits of pinching operatorsDi Iorio y Lucero, María EugeniaChiumiento, Eduardo HernanPinching OperatorLeft RepresentationSymmetrically Normed IdealSubmanifoldhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let I I be a symmetrically-normed ideal of the space of bounded operators acting on a Hilbert space H H . Let View the MathML source {pi}w1 (1≤w≤∞) (1≤w≤∞) be a family of mutually orthogonal projections on H H . The pinching operator associated with the former family of projections is given by P:I⟶I,P(x)=∑wi=1pixpi. Let UI UI denote the Banach–Lie group of the unitary operators whose difference with the identity belongs to I I . We study geometric properties of the orbit UI(P)={LuPLu∗:u∈UI}, UI(P)={LuPLu∗:u∈UI}, where Lu Lu is the left representation of UI UI on the algebra B(I) B(I) of bounded operators acting on I . The results include necessary and sufficient conditions for UI(P) to be a submanifold of B(I) . Special features arise in the case of the ideal K of compact operators. In general, UK(P) turns out to be a non complemented submanifold of B(K) . We find a necessary and sufficient condition for UK(P) to have complemented tangent spaces in B(K) . We also show that UI(P) is a covering space of another orbit of pinching operators.Fil: Di Iorio y Lucero, María Eugenia. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; ArgentinaFil: Chiumiento, Eduardo Hernan. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; ArgentinaAcademic Press Inc Elsevier Science2013-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3371Di Iorio y Lucero, María Eugenia; Chiumiento, Eduardo Hernan; Geometry of unitary orbits of pinching operators; Academic Press Inc Elsevier Science; Journal Of Mathematical Analysis And Applications; 402; 6-2013; 103-1180022-247Xenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X12010517info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.12.060info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:08:44Zoai:ri.conicet.gov.ar:11336/3371instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:08:44.359CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Geometry of unitary orbits of pinching operators |
| title |
Geometry of unitary orbits of pinching operators |
| spellingShingle |
Geometry of unitary orbits of pinching operators Di Iorio y Lucero, María Eugenia Pinching Operator Left Representation Symmetrically Normed Ideal Submanifold |
| title_short |
Geometry of unitary orbits of pinching operators |
| title_full |
Geometry of unitary orbits of pinching operators |
| title_fullStr |
Geometry of unitary orbits of pinching operators |
| title_full_unstemmed |
Geometry of unitary orbits of pinching operators |
| title_sort |
Geometry of unitary orbits of pinching operators |
| dc.creator.none.fl_str_mv |
Di Iorio y Lucero, María Eugenia Chiumiento, Eduardo Hernan |
| author |
Di Iorio y Lucero, María Eugenia |
| author_facet |
Di Iorio y Lucero, María Eugenia Chiumiento, Eduardo Hernan |
| author_role |
author |
| author2 |
Chiumiento, Eduardo Hernan |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Pinching Operator Left Representation Symmetrically Normed Ideal Submanifold |
| topic |
Pinching Operator Left Representation Symmetrically Normed Ideal Submanifold |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let I I be a symmetrically-normed ideal of the space of bounded operators acting on a Hilbert space H H . Let View the MathML source {pi}w1 (1≤w≤∞) (1≤w≤∞) be a family of mutually orthogonal projections on H H . The pinching operator associated with the former family of projections is given by P:I⟶I,P(x)=∑wi=1pixpi. Let UI UI denote the Banach–Lie group of the unitary operators whose difference with the identity belongs to I I . We study geometric properties of the orbit UI(P)={LuPLu∗:u∈UI}, UI(P)={LuPLu∗:u∈UI}, where Lu Lu is the left representation of UI UI on the algebra B(I) B(I) of bounded operators acting on I . The results include necessary and sufficient conditions for UI(P) to be a submanifold of B(I) . Special features arise in the case of the ideal K of compact operators. In general, UK(P) turns out to be a non complemented submanifold of B(K) . We find a necessary and sufficient condition for UK(P) to have complemented tangent spaces in B(K) . We also show that UI(P) is a covering space of another orbit of pinching operators. Fil: Di Iorio y Lucero, María Eugenia. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina Fil: Chiumiento, Eduardo Hernan. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina |
| description |
Let I I be a symmetrically-normed ideal of the space of bounded operators acting on a Hilbert space H H . Let View the MathML source {pi}w1 (1≤w≤∞) (1≤w≤∞) be a family of mutually orthogonal projections on H H . The pinching operator associated with the former family of projections is given by P:I⟶I,P(x)=∑wi=1pixpi. Let UI UI denote the Banach–Lie group of the unitary operators whose difference with the identity belongs to I I . We study geometric properties of the orbit UI(P)={LuPLu∗:u∈UI}, UI(P)={LuPLu∗:u∈UI}, where Lu Lu is the left representation of UI UI on the algebra B(I) B(I) of bounded operators acting on I . The results include necessary and sufficient conditions for UI(P) to be a submanifold of B(I) . Special features arise in the case of the ideal K of compact operators. In general, UK(P) turns out to be a non complemented submanifold of B(K) . We find a necessary and sufficient condition for UK(P) to have complemented tangent spaces in B(K) . We also show that UI(P) is a covering space of another orbit of pinching operators. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/3371 Di Iorio y Lucero, María Eugenia; Chiumiento, Eduardo Hernan; Geometry of unitary orbits of pinching operators; Academic Press Inc Elsevier Science; Journal Of Mathematical Analysis And Applications; 402; 6-2013; 103-118 0022-247X |
| url |
http://hdl.handle.net/11336/3371 |
| identifier_str_mv |
Di Iorio y Lucero, María Eugenia; Chiumiento, Eduardo Hernan; Geometry of unitary orbits of pinching operators; Academic Press Inc Elsevier Science; Journal Of Mathematical Analysis And Applications; 402; 6-2013; 103-118 0022-247X |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X12010517 info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.12.060 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782460519514112 |
| score |
12.982451 |