Percolation of clusters with a residence time in the bond definition: Integral equation theory
- Autores
- Zarragoicoechea, Guillermo Jorge; Pugnaloni, Luis A.; Lado, Fred; Lomba, Enrique; Vericat, Fernando
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider the clustering and percolation of continuum systems whose particles interact via the Lennard-Jones pair potential. A cluster definition is used according to which two particles are considered directly connected (bonded) at time t if they remain within a distance d, the connectivity distance, during at least a time of duration tau, the residence time. An integral equation for the corresponding pair connectedness function, recently proposed by two of the authors [Phys. Rev. E 61, R6067 (2000)], is solved using the orthogonal polynomial approach developed by another of the authors [Phys. Rev. E 55, 426 (1997)]. We compare our results with those obtained by molecular dynamics simulations.
Instituto de Física de Líquidos y Sistemas Biológicos
Grupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería - Materia
-
Física
Cluster (physics)
Mathematical analysis
Percolation
Social connectedness
Integral equation
Pair potential
Residence time (statistics)
Mathematics
Function (mathematics)
Continuum (topology) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/126013
Ver los metadatos del registro completo
| id |
SEDICI_013399b84a63b69b03c37b84f93475cb |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/126013 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Percolation of clusters with a residence time in the bond definition: Integral equation theoryZarragoicoechea, Guillermo JorgePugnaloni, Luis A.Lado, FredLomba, EnriqueVericat, FernandoFísicaCluster (physics)Mathematical analysisPercolationSocial connectednessIntegral equationPair potentialResidence time (statistics)MathematicsFunction (mathematics)Continuum (topology)We consider the clustering and percolation of continuum systems whose particles interact via the Lennard-Jones pair potential. A cluster definition is used according to which two particles are considered directly connected (bonded) at time t if they remain within a distance d, the connectivity distance, during at least a time of duration tau, the residence time. An integral equation for the corresponding pair connectedness function, recently proposed by two of the authors [Phys. Rev. E 61, R6067 (2000)], is solved using the orthogonal polynomial approach developed by another of the authors [Phys. Rev. E 55, 426 (1997)]. We compare our results with those obtained by molecular dynamics simulations.Instituto de Física de Líquidos y Sistemas BiológicosGrupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería2005-03-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/126013enginfo:eu-repo/semantics/altIdentifier/issn/1539-3755info:eu-repo/semantics/altIdentifier/issn/1550-2376info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.71.031202info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:11:11Zoai:sedici.unlp.edu.ar:10915/126013Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:11:12.218SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Percolation of clusters with a residence time in the bond definition: Integral equation theory |
| title |
Percolation of clusters with a residence time in the bond definition: Integral equation theory |
| spellingShingle |
Percolation of clusters with a residence time in the bond definition: Integral equation theory Zarragoicoechea, Guillermo Jorge Física Cluster (physics) Mathematical analysis Percolation Social connectedness Integral equation Pair potential Residence time (statistics) Mathematics Function (mathematics) Continuum (topology) |
| title_short |
Percolation of clusters with a residence time in the bond definition: Integral equation theory |
| title_full |
Percolation of clusters with a residence time in the bond definition: Integral equation theory |
| title_fullStr |
Percolation of clusters with a residence time in the bond definition: Integral equation theory |
| title_full_unstemmed |
Percolation of clusters with a residence time in the bond definition: Integral equation theory |
| title_sort |
Percolation of clusters with a residence time in the bond definition: Integral equation theory |
| dc.creator.none.fl_str_mv |
Zarragoicoechea, Guillermo Jorge Pugnaloni, Luis A. Lado, Fred Lomba, Enrique Vericat, Fernando |
| author |
Zarragoicoechea, Guillermo Jorge |
| author_facet |
Zarragoicoechea, Guillermo Jorge Pugnaloni, Luis A. Lado, Fred Lomba, Enrique Vericat, Fernando |
| author_role |
author |
| author2 |
Pugnaloni, Luis A. Lado, Fred Lomba, Enrique Vericat, Fernando |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
Física Cluster (physics) Mathematical analysis Percolation Social connectedness Integral equation Pair potential Residence time (statistics) Mathematics Function (mathematics) Continuum (topology) |
| topic |
Física Cluster (physics) Mathematical analysis Percolation Social connectedness Integral equation Pair potential Residence time (statistics) Mathematics Function (mathematics) Continuum (topology) |
| dc.description.none.fl_txt_mv |
We consider the clustering and percolation of continuum systems whose particles interact via the Lennard-Jones pair potential. A cluster definition is used according to which two particles are considered directly connected (bonded) at time t if they remain within a distance d, the connectivity distance, during at least a time of duration tau, the residence time. An integral equation for the corresponding pair connectedness function, recently proposed by two of the authors [Phys. Rev. E 61, R6067 (2000)], is solved using the orthogonal polynomial approach developed by another of the authors [Phys. Rev. E 55, 426 (1997)]. We compare our results with those obtained by molecular dynamics simulations. Instituto de Física de Líquidos y Sistemas Biológicos Grupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería |
| description |
We consider the clustering and percolation of continuum systems whose particles interact via the Lennard-Jones pair potential. A cluster definition is used according to which two particles are considered directly connected (bonded) at time t if they remain within a distance d, the connectivity distance, during at least a time of duration tau, the residence time. An integral equation for the corresponding pair connectedness function, recently proposed by two of the authors [Phys. Rev. E 61, R6067 (2000)], is solved using the orthogonal polynomial approach developed by another of the authors [Phys. Rev. E 55, 426 (1997)]. We compare our results with those obtained by molecular dynamics simulations. |
| publishDate |
2005 |
| dc.date.none.fl_str_mv |
2005-03-18 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/126013 |
| url |
http://sedici.unlp.edu.ar/handle/10915/126013 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1539-3755 info:eu-repo/semantics/altIdentifier/issn/1550-2376 info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.71.031202 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783459274522624 |
| score |
12.982451 |