Percolation of clusters with a residence time in the bond definition: Integral equation theory

Autores
Zarragoicoechea, Guillermo Jorge; Pugnaloni, Luis A.; Lado, Fred; Lomba, Enrique; Vericat, Fernando
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider the clustering and percolation of continuum systems whose particles interact via the Lennard-Jones pair potential. A cluster definition is used according to which two particles are considered directly connected (bonded) at time t if they remain within a distance d, the connectivity distance, during at least a time of duration tau, the residence time. An integral equation for the corresponding pair connectedness function, recently proposed by two of the authors [Phys. Rev. E 61, R6067 (2000)], is solved using the orthogonal polynomial approach developed by another of the authors [Phys. Rev. E 55, 426 (1997)]. We compare our results with those obtained by molecular dynamics simulations.
Instituto de Física de Líquidos y Sistemas Biológicos
Grupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería
Materia
Física
Cluster (physics)
Mathematical analysis
Percolation
Social connectedness
Integral equation
Pair potential
Residence time (statistics)
Mathematics
Function (mathematics)
Continuum (topology)
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/126013

id SEDICI_013399b84a63b69b03c37b84f93475cb
oai_identifier_str oai:sedici.unlp.edu.ar:10915/126013
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Percolation of clusters with a residence time in the bond definition: Integral equation theoryZarragoicoechea, Guillermo JorgePugnaloni, Luis A.Lado, FredLomba, EnriqueVericat, FernandoFísicaCluster (physics)Mathematical analysisPercolationSocial connectednessIntegral equationPair potentialResidence time (statistics)MathematicsFunction (mathematics)Continuum (topology)We consider the clustering and percolation of continuum systems whose particles interact via the Lennard-Jones pair potential. A cluster definition is used according to which two particles are considered directly connected (bonded) at time t if they remain within a distance d, the connectivity distance, during at least a time of duration tau, the residence time. An integral equation for the corresponding pair connectedness function, recently proposed by two of the authors [Phys. Rev. E 61, R6067 (2000)], is solved using the orthogonal polynomial approach developed by another of the authors [Phys. Rev. E 55, 426 (1997)]. We compare our results with those obtained by molecular dynamics simulations.Instituto de Física de Líquidos y Sistemas BiológicosGrupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería2005-03-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/126013enginfo:eu-repo/semantics/altIdentifier/issn/1539-3755info:eu-repo/semantics/altIdentifier/issn/1550-2376info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.71.031202info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:11:11Zoai:sedici.unlp.edu.ar:10915/126013Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:11:12.218SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Percolation of clusters with a residence time in the bond definition: Integral equation theory
title Percolation of clusters with a residence time in the bond definition: Integral equation theory
spellingShingle Percolation of clusters with a residence time in the bond definition: Integral equation theory
Zarragoicoechea, Guillermo Jorge
Física
Cluster (physics)
Mathematical analysis
Percolation
Social connectedness
Integral equation
Pair potential
Residence time (statistics)
Mathematics
Function (mathematics)
Continuum (topology)
title_short Percolation of clusters with a residence time in the bond definition: Integral equation theory
title_full Percolation of clusters with a residence time in the bond definition: Integral equation theory
title_fullStr Percolation of clusters with a residence time in the bond definition: Integral equation theory
title_full_unstemmed Percolation of clusters with a residence time in the bond definition: Integral equation theory
title_sort Percolation of clusters with a residence time in the bond definition: Integral equation theory
dc.creator.none.fl_str_mv Zarragoicoechea, Guillermo Jorge
Pugnaloni, Luis A.
Lado, Fred
Lomba, Enrique
Vericat, Fernando
author Zarragoicoechea, Guillermo Jorge
author_facet Zarragoicoechea, Guillermo Jorge
Pugnaloni, Luis A.
Lado, Fred
Lomba, Enrique
Vericat, Fernando
author_role author
author2 Pugnaloni, Luis A.
Lado, Fred
Lomba, Enrique
Vericat, Fernando
author2_role author
author
author
author
dc.subject.none.fl_str_mv Física
Cluster (physics)
Mathematical analysis
Percolation
Social connectedness
Integral equation
Pair potential
Residence time (statistics)
Mathematics
Function (mathematics)
Continuum (topology)
topic Física
Cluster (physics)
Mathematical analysis
Percolation
Social connectedness
Integral equation
Pair potential
Residence time (statistics)
Mathematics
Function (mathematics)
Continuum (topology)
dc.description.none.fl_txt_mv We consider the clustering and percolation of continuum systems whose particles interact via the Lennard-Jones pair potential. A cluster definition is used according to which two particles are considered directly connected (bonded) at time t if they remain within a distance d, the connectivity distance, during at least a time of duration tau, the residence time. An integral equation for the corresponding pair connectedness function, recently proposed by two of the authors [Phys. Rev. E 61, R6067 (2000)], is solved using the orthogonal polynomial approach developed by another of the authors [Phys. Rev. E 55, 426 (1997)]. We compare our results with those obtained by molecular dynamics simulations.
Instituto de Física de Líquidos y Sistemas Biológicos
Grupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería
description We consider the clustering and percolation of continuum systems whose particles interact via the Lennard-Jones pair potential. A cluster definition is used according to which two particles are considered directly connected (bonded) at time t if they remain within a distance d, the connectivity distance, during at least a time of duration tau, the residence time. An integral equation for the corresponding pair connectedness function, recently proposed by two of the authors [Phys. Rev. E 61, R6067 (2000)], is solved using the orthogonal polynomial approach developed by another of the authors [Phys. Rev. E 55, 426 (1997)]. We compare our results with those obtained by molecular dynamics simulations.
publishDate 2005
dc.date.none.fl_str_mv 2005-03-18
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/126013
url http://sedici.unlp.edu.ar/handle/10915/126013
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1539-3755
info:eu-repo/semantics/altIdentifier/issn/1550-2376
info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.71.031202
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783459274522624
score 12.982451