Dimer site-bond percolation on a triangular lattice

Autores
Ramirez, Luis Sebastian; De La Cruz, Felix N.; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A generalization of the site-percolation problem, in which pairs of neighbor sites (site dimers) and bonds are independently and randomly occupied on a triangular lattice, has been studied by means of numerical simulations. Motivated by considerations of cluster connectivity, two distinct schemes (denoted as S ∩ B and S ∩ B) have been considered. In S ∪ B (S ∪ B), two points are said to be connected if a sequence of occupied sites and ( or) bonds joins them. Numerical data, supplemented by analysis using finite-size scaling theory, were used to determine (i) the complete phase diagram of the system (phase boundary between the percolating and nonpercolating regions), and (ii) the values of the critical exponents (and universality) characterizing the phase transition occurring in the system.
Fil: Ramirez, Luis Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; Argentina
Fil: De La Cruz, Felix N.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; Argentina. Universidad Autónoma de Santo Domingo; República Dominicana
Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; Argentina
Materia
Numerical Simulations
Percolation Problems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/63854

id CONICETDig_8536683d1aac09d223cfaefd535a1438
oai_identifier_str oai:ri.conicet.gov.ar:11336/63854
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dimer site-bond percolation on a triangular latticeRamirez, Luis SebastianDe La Cruz, Felix N.Centres, Paulo MarceloRamirez Pastor, Antonio JoseNumerical SimulationsPercolation Problemshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A generalization of the site-percolation problem, in which pairs of neighbor sites (site dimers) and bonds are independently and randomly occupied on a triangular lattice, has been studied by means of numerical simulations. Motivated by considerations of cluster connectivity, two distinct schemes (denoted as S ∩ B and S ∩ B) have been considered. In S ∪ B (S ∪ B), two points are said to be connected if a sequence of occupied sites and ( or) bonds joins them. Numerical data, supplemented by analysis using finite-size scaling theory, were used to determine (i) the complete phase diagram of the system (phase boundary between the percolating and nonpercolating regions), and (ii) the values of the critical exponents (and universality) characterizing the phase transition occurring in the system.Fil: Ramirez, Luis Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; ArgentinaFil: De La Cruz, Felix N.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; Argentina. Universidad Autónoma de Santo Domingo; República DominicanaFil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; ArgentinaIOP Publishing2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63854Ramirez, Luis Sebastian; De La Cruz, Felix N.; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Dimer site-bond percolation on a triangular lattice; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2017; 2; 2-20171742-5468CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/aa58f2info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/aa58f2/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:01:55Zoai:ri.conicet.gov.ar:11336/63854instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:01:55.405CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dimer site-bond percolation on a triangular lattice
title Dimer site-bond percolation on a triangular lattice
spellingShingle Dimer site-bond percolation on a triangular lattice
Ramirez, Luis Sebastian
Numerical Simulations
Percolation Problems
title_short Dimer site-bond percolation on a triangular lattice
title_full Dimer site-bond percolation on a triangular lattice
title_fullStr Dimer site-bond percolation on a triangular lattice
title_full_unstemmed Dimer site-bond percolation on a triangular lattice
title_sort Dimer site-bond percolation on a triangular lattice
dc.creator.none.fl_str_mv Ramirez, Luis Sebastian
De La Cruz, Felix N.
Centres, Paulo Marcelo
Ramirez Pastor, Antonio Jose
author Ramirez, Luis Sebastian
author_facet Ramirez, Luis Sebastian
De La Cruz, Felix N.
Centres, Paulo Marcelo
Ramirez Pastor, Antonio Jose
author_role author
author2 De La Cruz, Felix N.
Centres, Paulo Marcelo
Ramirez Pastor, Antonio Jose
author2_role author
author
author
dc.subject.none.fl_str_mv Numerical Simulations
Percolation Problems
topic Numerical Simulations
Percolation Problems
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A generalization of the site-percolation problem, in which pairs of neighbor sites (site dimers) and bonds are independently and randomly occupied on a triangular lattice, has been studied by means of numerical simulations. Motivated by considerations of cluster connectivity, two distinct schemes (denoted as S ∩ B and S ∩ B) have been considered. In S ∪ B (S ∪ B), two points are said to be connected if a sequence of occupied sites and ( or) bonds joins them. Numerical data, supplemented by analysis using finite-size scaling theory, were used to determine (i) the complete phase diagram of the system (phase boundary between the percolating and nonpercolating regions), and (ii) the values of the critical exponents (and universality) characterizing the phase transition occurring in the system.
Fil: Ramirez, Luis Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; Argentina
Fil: De La Cruz, Felix N.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; Argentina. Universidad Autónoma de Santo Domingo; República Dominicana
Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; Argentina
description A generalization of the site-percolation problem, in which pairs of neighbor sites (site dimers) and bonds are independently and randomly occupied on a triangular lattice, has been studied by means of numerical simulations. Motivated by considerations of cluster connectivity, two distinct schemes (denoted as S ∩ B and S ∩ B) have been considered. In S ∪ B (S ∪ B), two points are said to be connected if a sequence of occupied sites and ( or) bonds joins them. Numerical data, supplemented by analysis using finite-size scaling theory, were used to determine (i) the complete phase diagram of the system (phase boundary between the percolating and nonpercolating regions), and (ii) the values of the critical exponents (and universality) characterizing the phase transition occurring in the system.
publishDate 2017
dc.date.none.fl_str_mv 2017-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/63854
Ramirez, Luis Sebastian; De La Cruz, Felix N.; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Dimer site-bond percolation on a triangular lattice; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2017; 2; 2-2017
1742-5468
CONICET Digital
CONICET
url http://hdl.handle.net/11336/63854
identifier_str_mv Ramirez, Luis Sebastian; De La Cruz, Felix N.; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Dimer site-bond percolation on a triangular lattice; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2017; 2; 2-2017
1742-5468
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/aa58f2
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/aa58f2/meta
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842979981397852160
score 13.004268