Standard and inverse bond percolation of straight rigid rods on square lattices
- Autores
- Ramírez, Lucía Soledad; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Numerical simulations and finite-size scaling analysis have been carried out to study standard and inverse bond percolation of straight rigid rods on square lattices. In the case of standard percolation, the lattice is initially empty. Then, linear bond k-mers (sets of k linear nearest-neighbor bonds) are randomly and sequentially deposited on the lattice. Jamming coverage pj,k and percolation threshold pc,k are determined for a wide range of k (1≤k≤120). pj,k and pc,k exhibit a decreasing behavior with increasing k, pj,k→∞=0.7476(1) and pc,k→∞=0.0033(9) being the limit values for large k-mer sizes. pj,k is always greater than pc,k, and consequently, the percolation phase transition occurs for all values of k. In the case of inverse percolation, the process starts with an initial configuration where all lattice bonds are occupied and, given that periodic boundary conditions are used, the opposite sides of the lattice are connected by nearest-neighbor occupied bonds. Then, the system is diluted by randomly removing linear bond k-mers from the lattice. The central idea here is based on finding the maximum concentration of occupied bonds (minimum concentration of empty bonds) for which connectivity disappears. This particular value of concentration is called the inverse percolation threshold pc,ki, and determines a geometrical phase transition in the system. On the other hand, the inverse jamming coverage pj,ki is the coverage of the limit state, in which no more objects can be removed from the lattice due to the absence of linear clusters of nearest-neighbor bonds of appropriate size. It is easy to understand that pj,ki=1-pj,k. The obtained results for pc,ki show that the inverse percolation threshold is a decreasing function of k in the range 1≤k≤18. For k>18, all jammed configurations are percolating states, and consequently, there is no nonpercolating phase. In other words, the lattice remains connected even when the highest allowed concentration of removed bonds pj,ki is reached. In terms of network attacks, this striking behavior indicates that random attacks on single nodes (k=1) are much more effective than correlated attacks on groups of close nodes (large k's). Finally, the accurate determination of critical exponents reveals that standard and inverse bond percolation models on square lattices belong to the same universality class as the random percolation, regardless of the size k considered.
Fil: Ramírez, Lucía Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina - Materia
-
INVERSE
PERCOLATION
THRESHOLD
JAMMING
PERCOLATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/86686
Ver los metadatos del registro completo
id |
CONICETDig_8fe0604aa3725603aadf70e01aa63de7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/86686 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Standard and inverse bond percolation of straight rigid rods on square latticesRamírez, Lucía SoledadCentres, Paulo MarceloRamirez Pastor, Antonio JoseINVERSEPERCOLATIONTHRESHOLDJAMMINGPERCOLATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Numerical simulations and finite-size scaling analysis have been carried out to study standard and inverse bond percolation of straight rigid rods on square lattices. In the case of standard percolation, the lattice is initially empty. Then, linear bond k-mers (sets of k linear nearest-neighbor bonds) are randomly and sequentially deposited on the lattice. Jamming coverage pj,k and percolation threshold pc,k are determined for a wide range of k (1≤k≤120). pj,k and pc,k exhibit a decreasing behavior with increasing k, pj,k→∞=0.7476(1) and pc,k→∞=0.0033(9) being the limit values for large k-mer sizes. pj,k is always greater than pc,k, and consequently, the percolation phase transition occurs for all values of k. In the case of inverse percolation, the process starts with an initial configuration where all lattice bonds are occupied and, given that periodic boundary conditions are used, the opposite sides of the lattice are connected by nearest-neighbor occupied bonds. Then, the system is diluted by randomly removing linear bond k-mers from the lattice. The central idea here is based on finding the maximum concentration of occupied bonds (minimum concentration of empty bonds) for which connectivity disappears. This particular value of concentration is called the inverse percolation threshold pc,ki, and determines a geometrical phase transition in the system. On the other hand, the inverse jamming coverage pj,ki is the coverage of the limit state, in which no more objects can be removed from the lattice due to the absence of linear clusters of nearest-neighbor bonds of appropriate size. It is easy to understand that pj,ki=1-pj,k. The obtained results for pc,ki show that the inverse percolation threshold is a decreasing function of k in the range 1≤k≤18. For k>18, all jammed configurations are percolating states, and consequently, there is no nonpercolating phase. In other words, the lattice remains connected even when the highest allowed concentration of removed bonds pj,ki is reached. In terms of network attacks, this striking behavior indicates that random attacks on single nodes (k=1) are much more effective than correlated attacks on groups of close nodes (large k's). Finally, the accurate determination of critical exponents reveals that standard and inverse bond percolation models on square lattices belong to the same universality class as the random percolation, regardless of the size k considered.Fil: Ramírez, Lucía Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaAmerican Physical Society2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/86686Ramírez, Lucía Soledad; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Standard and inverse bond percolation of straight rigid rods on square lattices; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 97; 4; 4-2018; 42113-421221539-37552470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.042113info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.97.042113info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:43Zoai:ri.conicet.gov.ar:11336/86686instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:43.92CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Standard and inverse bond percolation of straight rigid rods on square lattices |
title |
Standard and inverse bond percolation of straight rigid rods on square lattices |
spellingShingle |
Standard and inverse bond percolation of straight rigid rods on square lattices Ramírez, Lucía Soledad INVERSE PERCOLATION THRESHOLD JAMMING PERCOLATION |
title_short |
Standard and inverse bond percolation of straight rigid rods on square lattices |
title_full |
Standard and inverse bond percolation of straight rigid rods on square lattices |
title_fullStr |
Standard and inverse bond percolation of straight rigid rods on square lattices |
title_full_unstemmed |
Standard and inverse bond percolation of straight rigid rods on square lattices |
title_sort |
Standard and inverse bond percolation of straight rigid rods on square lattices |
dc.creator.none.fl_str_mv |
Ramírez, Lucía Soledad Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose |
author |
Ramírez, Lucía Soledad |
author_facet |
Ramírez, Lucía Soledad Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose |
author_role |
author |
author2 |
Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose |
author2_role |
author author |
dc.subject.none.fl_str_mv |
INVERSE PERCOLATION THRESHOLD JAMMING PERCOLATION |
topic |
INVERSE PERCOLATION THRESHOLD JAMMING PERCOLATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Numerical simulations and finite-size scaling analysis have been carried out to study standard and inverse bond percolation of straight rigid rods on square lattices. In the case of standard percolation, the lattice is initially empty. Then, linear bond k-mers (sets of k linear nearest-neighbor bonds) are randomly and sequentially deposited on the lattice. Jamming coverage pj,k and percolation threshold pc,k are determined for a wide range of k (1≤k≤120). pj,k and pc,k exhibit a decreasing behavior with increasing k, pj,k→∞=0.7476(1) and pc,k→∞=0.0033(9) being the limit values for large k-mer sizes. pj,k is always greater than pc,k, and consequently, the percolation phase transition occurs for all values of k. In the case of inverse percolation, the process starts with an initial configuration where all lattice bonds are occupied and, given that periodic boundary conditions are used, the opposite sides of the lattice are connected by nearest-neighbor occupied bonds. Then, the system is diluted by randomly removing linear bond k-mers from the lattice. The central idea here is based on finding the maximum concentration of occupied bonds (minimum concentration of empty bonds) for which connectivity disappears. This particular value of concentration is called the inverse percolation threshold pc,ki, and determines a geometrical phase transition in the system. On the other hand, the inverse jamming coverage pj,ki is the coverage of the limit state, in which no more objects can be removed from the lattice due to the absence of linear clusters of nearest-neighbor bonds of appropriate size. It is easy to understand that pj,ki=1-pj,k. The obtained results for pc,ki show that the inverse percolation threshold is a decreasing function of k in the range 1≤k≤18. For k>18, all jammed configurations are percolating states, and consequently, there is no nonpercolating phase. In other words, the lattice remains connected even when the highest allowed concentration of removed bonds pj,ki is reached. In terms of network attacks, this striking behavior indicates that random attacks on single nodes (k=1) are much more effective than correlated attacks on groups of close nodes (large k's). Finally, the accurate determination of critical exponents reveals that standard and inverse bond percolation models on square lattices belong to the same universality class as the random percolation, regardless of the size k considered. Fil: Ramírez, Lucía Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina |
description |
Numerical simulations and finite-size scaling analysis have been carried out to study standard and inverse bond percolation of straight rigid rods on square lattices. In the case of standard percolation, the lattice is initially empty. Then, linear bond k-mers (sets of k linear nearest-neighbor bonds) are randomly and sequentially deposited on the lattice. Jamming coverage pj,k and percolation threshold pc,k are determined for a wide range of k (1≤k≤120). pj,k and pc,k exhibit a decreasing behavior with increasing k, pj,k→∞=0.7476(1) and pc,k→∞=0.0033(9) being the limit values for large k-mer sizes. pj,k is always greater than pc,k, and consequently, the percolation phase transition occurs for all values of k. In the case of inverse percolation, the process starts with an initial configuration where all lattice bonds are occupied and, given that periodic boundary conditions are used, the opposite sides of the lattice are connected by nearest-neighbor occupied bonds. Then, the system is diluted by randomly removing linear bond k-mers from the lattice. The central idea here is based on finding the maximum concentration of occupied bonds (minimum concentration of empty bonds) for which connectivity disappears. This particular value of concentration is called the inverse percolation threshold pc,ki, and determines a geometrical phase transition in the system. On the other hand, the inverse jamming coverage pj,ki is the coverage of the limit state, in which no more objects can be removed from the lattice due to the absence of linear clusters of nearest-neighbor bonds of appropriate size. It is easy to understand that pj,ki=1-pj,k. The obtained results for pc,ki show that the inverse percolation threshold is a decreasing function of k in the range 1≤k≤18. For k>18, all jammed configurations are percolating states, and consequently, there is no nonpercolating phase. In other words, the lattice remains connected even when the highest allowed concentration of removed bonds pj,ki is reached. In terms of network attacks, this striking behavior indicates that random attacks on single nodes (k=1) are much more effective than correlated attacks on groups of close nodes (large k's). Finally, the accurate determination of critical exponents reveals that standard and inverse bond percolation models on square lattices belong to the same universality class as the random percolation, regardless of the size k considered. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/86686 Ramírez, Lucía Soledad; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Standard and inverse bond percolation of straight rigid rods on square lattices; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 97; 4; 4-2018; 42113-42122 1539-3755 2470-0053 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/86686 |
identifier_str_mv |
Ramírez, Lucía Soledad; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Standard and inverse bond percolation of straight rigid rods on square lattices; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 97; 4; 4-2018; 42113-42122 1539-3755 2470-0053 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.042113 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.97.042113 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613153706475520 |
score |
13.070432 |