Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition

Autores
Vericat, Fernando; Carlevaro, Carlos Manuel; Stoico, César Omar; Renzi, Danilo Germán
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this article, dedicated to the memory of Lesser Blum, we develop a theory for the physical clusters which were introduced some time ago in our group (J. Chem Phys. 116, 1097–1108, 2002). The physical cluster definition establishes that a system particle belongs to the cluster if it is (nonspecifically) bonded to other particles of the cluster along a finite time period τ (the residence time). Our theory has as main ingredients the Stillinger criterion of instantaneous connectivity, that involves a connectivity distance d, the generalized time-dependent pair distribution function of Oppenheim and Bloom that acts as a classical propagator and also the cluster pair correlation function for a weaker version of the physical clusters that requires connectivity just at the extremes of the time period no matter what happens in between. With these tools we express the time dependent pair connectedness function for the physical clusters in the strong sense as a path integral. The path integral is solved by means of a perturbation expansion where the nonperturbed connectedness function coincides with the generalized pair distribution function of Oppenheim and Bloom. We apply the theory to Lennard-Jones fluids at low densities and perform molecular dynamics simulations to check the goodness of diverse functions that appear in the theory.
Fil: Vericat, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Carlevaro, Carlos Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina
Fil: Stoico, César Omar. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina
Fil: Renzi, Danilo Germán. Universidad Nacional de Rosario. Facultad de Ciencias Veterinarias; Argentina
Materia
PATH-INTEGRAL
PHYSICAL CLUSTERS
STRONG CRITERION
TIME-DEPENDENT CLUSTERS
TIME-DEPENDENT PAIR DISTRIBUTION FUNCTION
WEAK CRITERION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/51303

id CONICETDig_258084ba3121ff13814851bb316706e1
oai_identifier_str oai:ri.conicet.gov.ar:11336/51303
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definitionVericat, FernandoCarlevaro, Carlos ManuelStoico, César OmarRenzi, Danilo GermánPATH-INTEGRALPHYSICAL CLUSTERSSTRONG CRITERIONTIME-DEPENDENT CLUSTERSTIME-DEPENDENT PAIR DISTRIBUTION FUNCTIONWEAK CRITERIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this article, dedicated to the memory of Lesser Blum, we develop a theory for the physical clusters which were introduced some time ago in our group (J. Chem Phys. 116, 1097–1108, 2002). The physical cluster definition establishes that a system particle belongs to the cluster if it is (nonspecifically) bonded to other particles of the cluster along a finite time period τ (the residence time). Our theory has as main ingredients the Stillinger criterion of instantaneous connectivity, that involves a connectivity distance d, the generalized time-dependent pair distribution function of Oppenheim and Bloom that acts as a classical propagator and also the cluster pair correlation function for a weaker version of the physical clusters that requires connectivity just at the extremes of the time period no matter what happens in between. With these tools we express the time dependent pair connectedness function for the physical clusters in the strong sense as a path integral. The path integral is solved by means of a perturbation expansion where the nonperturbed connectedness function coincides with the generalized pair distribution function of Oppenheim and Bloom. We apply the theory to Lennard-Jones fluids at low densities and perform molecular dynamics simulations to check the goodness of diverse functions that appear in the theory.Fil: Vericat, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Carlevaro, Carlos Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; ArgentinaFil: Stoico, César Omar. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; ArgentinaFil: Renzi, Danilo Germán. Universidad Nacional de Rosario. Facultad de Ciencias Veterinarias; ArgentinaElsevier Science2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51303Vericat, Fernando; Carlevaro, Carlos Manuel; Stoico, César Omar; Renzi, Danilo Germán; Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition; Elsevier Science; Journal of Molecular Liquids; 270; 11-2017; 128-1370167-7322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.molliq.2017.11.046info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167732217339740info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:02:06Zoai:ri.conicet.gov.ar:11336/51303instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:02:06.51CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition
title Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition
spellingShingle Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition
Vericat, Fernando
PATH-INTEGRAL
PHYSICAL CLUSTERS
STRONG CRITERION
TIME-DEPENDENT CLUSTERS
TIME-DEPENDENT PAIR DISTRIBUTION FUNCTION
WEAK CRITERION
title_short Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition
title_full Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition
title_fullStr Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition
title_full_unstemmed Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition
title_sort Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition
dc.creator.none.fl_str_mv Vericat, Fernando
Carlevaro, Carlos Manuel
Stoico, César Omar
Renzi, Danilo Germán
author Vericat, Fernando
author_facet Vericat, Fernando
Carlevaro, Carlos Manuel
Stoico, César Omar
Renzi, Danilo Germán
author_role author
author2 Carlevaro, Carlos Manuel
Stoico, César Omar
Renzi, Danilo Germán
author2_role author
author
author
dc.subject.none.fl_str_mv PATH-INTEGRAL
PHYSICAL CLUSTERS
STRONG CRITERION
TIME-DEPENDENT CLUSTERS
TIME-DEPENDENT PAIR DISTRIBUTION FUNCTION
WEAK CRITERION
topic PATH-INTEGRAL
PHYSICAL CLUSTERS
STRONG CRITERION
TIME-DEPENDENT CLUSTERS
TIME-DEPENDENT PAIR DISTRIBUTION FUNCTION
WEAK CRITERION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this article, dedicated to the memory of Lesser Blum, we develop a theory for the physical clusters which were introduced some time ago in our group (J. Chem Phys. 116, 1097–1108, 2002). The physical cluster definition establishes that a system particle belongs to the cluster if it is (nonspecifically) bonded to other particles of the cluster along a finite time period τ (the residence time). Our theory has as main ingredients the Stillinger criterion of instantaneous connectivity, that involves a connectivity distance d, the generalized time-dependent pair distribution function of Oppenheim and Bloom that acts as a classical propagator and also the cluster pair correlation function for a weaker version of the physical clusters that requires connectivity just at the extremes of the time period no matter what happens in between. With these tools we express the time dependent pair connectedness function for the physical clusters in the strong sense as a path integral. The path integral is solved by means of a perturbation expansion where the nonperturbed connectedness function coincides with the generalized pair distribution function of Oppenheim and Bloom. We apply the theory to Lennard-Jones fluids at low densities and perform molecular dynamics simulations to check the goodness of diverse functions that appear in the theory.
Fil: Vericat, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Carlevaro, Carlos Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina
Fil: Stoico, César Omar. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina
Fil: Renzi, Danilo Germán. Universidad Nacional de Rosario. Facultad de Ciencias Veterinarias; Argentina
description In this article, dedicated to the memory of Lesser Blum, we develop a theory for the physical clusters which were introduced some time ago in our group (J. Chem Phys. 116, 1097–1108, 2002). The physical cluster definition establishes that a system particle belongs to the cluster if it is (nonspecifically) bonded to other particles of the cluster along a finite time period τ (the residence time). Our theory has as main ingredients the Stillinger criterion of instantaneous connectivity, that involves a connectivity distance d, the generalized time-dependent pair distribution function of Oppenheim and Bloom that acts as a classical propagator and also the cluster pair correlation function for a weaker version of the physical clusters that requires connectivity just at the extremes of the time period no matter what happens in between. With these tools we express the time dependent pair connectedness function for the physical clusters in the strong sense as a path integral. The path integral is solved by means of a perturbation expansion where the nonperturbed connectedness function coincides with the generalized pair distribution function of Oppenheim and Bloom. We apply the theory to Lennard-Jones fluids at low densities and perform molecular dynamics simulations to check the goodness of diverse functions that appear in the theory.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/51303
Vericat, Fernando; Carlevaro, Carlos Manuel; Stoico, César Omar; Renzi, Danilo Germán; Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition; Elsevier Science; Journal of Molecular Liquids; 270; 11-2017; 128-137
0167-7322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/51303
identifier_str_mv Vericat, Fernando; Carlevaro, Carlos Manuel; Stoico, César Omar; Renzi, Danilo Germán; Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition; Elsevier Science; Journal of Molecular Liquids; 270; 11-2017; 128-137
0167-7322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.molliq.2017.11.046
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167732217339740
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781221166645248
score 12.982451