Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition
- Autores
- Vericat, Fernando; Carlevaro, Carlos Manuel; Stoico, César Omar; Renzi, Danilo Germán
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article, dedicated to the memory of Lesser Blum, we develop a theory for the physical clusters which were introduced some time ago in our group (J. Chem Phys. 116, 1097–1108, 2002). The physical cluster definition establishes that a system particle belongs to the cluster if it is (nonspecifically) bonded to other particles of the cluster along a finite time period τ (the residence time). Our theory has as main ingredients the Stillinger criterion of instantaneous connectivity, that involves a connectivity distance d, the generalized time-dependent pair distribution function of Oppenheim and Bloom that acts as a classical propagator and also the cluster pair correlation function for a weaker version of the physical clusters that requires connectivity just at the extremes of the time period no matter what happens in between. With these tools we express the time dependent pair connectedness function for the physical clusters in the strong sense as a path integral. The path integral is solved by means of a perturbation expansion where the nonperturbed connectedness function coincides with the generalized pair distribution function of Oppenheim and Bloom. We apply the theory to Lennard-Jones fluids at low densities and perform molecular dynamics simulations to check the goodness of diverse functions that appear in the theory.
Fil: Vericat, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Carlevaro, Carlos Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina
Fil: Stoico, César Omar. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina
Fil: Renzi, Danilo Germán. Universidad Nacional de Rosario. Facultad de Ciencias Veterinarias; Argentina - Materia
-
PATH-INTEGRAL
PHYSICAL CLUSTERS
STRONG CRITERION
TIME-DEPENDENT CLUSTERS
TIME-DEPENDENT PAIR DISTRIBUTION FUNCTION
WEAK CRITERION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/51303
Ver los metadatos del registro completo
| id |
CONICETDig_258084ba3121ff13814851bb316706e1 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/51303 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definitionVericat, FernandoCarlevaro, Carlos ManuelStoico, César OmarRenzi, Danilo GermánPATH-INTEGRALPHYSICAL CLUSTERSSTRONG CRITERIONTIME-DEPENDENT CLUSTERSTIME-DEPENDENT PAIR DISTRIBUTION FUNCTIONWEAK CRITERIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this article, dedicated to the memory of Lesser Blum, we develop a theory for the physical clusters which were introduced some time ago in our group (J. Chem Phys. 116, 1097–1108, 2002). The physical cluster definition establishes that a system particle belongs to the cluster if it is (nonspecifically) bonded to other particles of the cluster along a finite time period τ (the residence time). Our theory has as main ingredients the Stillinger criterion of instantaneous connectivity, that involves a connectivity distance d, the generalized time-dependent pair distribution function of Oppenheim and Bloom that acts as a classical propagator and also the cluster pair correlation function for a weaker version of the physical clusters that requires connectivity just at the extremes of the time period no matter what happens in between. With these tools we express the time dependent pair connectedness function for the physical clusters in the strong sense as a path integral. The path integral is solved by means of a perturbation expansion where the nonperturbed connectedness function coincides with the generalized pair distribution function of Oppenheim and Bloom. We apply the theory to Lennard-Jones fluids at low densities and perform molecular dynamics simulations to check the goodness of diverse functions that appear in the theory.Fil: Vericat, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Carlevaro, Carlos Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; ArgentinaFil: Stoico, César Omar. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; ArgentinaFil: Renzi, Danilo Germán. Universidad Nacional de Rosario. Facultad de Ciencias Veterinarias; ArgentinaElsevier Science2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51303Vericat, Fernando; Carlevaro, Carlos Manuel; Stoico, César Omar; Renzi, Danilo Germán; Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition; Elsevier Science; Journal of Molecular Liquids; 270; 11-2017; 128-1370167-7322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.molliq.2017.11.046info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167732217339740info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:02:06Zoai:ri.conicet.gov.ar:11336/51303instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:02:06.51CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition |
| title |
Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition |
| spellingShingle |
Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition Vericat, Fernando PATH-INTEGRAL PHYSICAL CLUSTERS STRONG CRITERION TIME-DEPENDENT CLUSTERS TIME-DEPENDENT PAIR DISTRIBUTION FUNCTION WEAK CRITERION |
| title_short |
Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition |
| title_full |
Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition |
| title_fullStr |
Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition |
| title_full_unstemmed |
Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition |
| title_sort |
Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition |
| dc.creator.none.fl_str_mv |
Vericat, Fernando Carlevaro, Carlos Manuel Stoico, César Omar Renzi, Danilo Germán |
| author |
Vericat, Fernando |
| author_facet |
Vericat, Fernando Carlevaro, Carlos Manuel Stoico, César Omar Renzi, Danilo Germán |
| author_role |
author |
| author2 |
Carlevaro, Carlos Manuel Stoico, César Omar Renzi, Danilo Germán |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
PATH-INTEGRAL PHYSICAL CLUSTERS STRONG CRITERION TIME-DEPENDENT CLUSTERS TIME-DEPENDENT PAIR DISTRIBUTION FUNCTION WEAK CRITERION |
| topic |
PATH-INTEGRAL PHYSICAL CLUSTERS STRONG CRITERION TIME-DEPENDENT CLUSTERS TIME-DEPENDENT PAIR DISTRIBUTION FUNCTION WEAK CRITERION |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this article, dedicated to the memory of Lesser Blum, we develop a theory for the physical clusters which were introduced some time ago in our group (J. Chem Phys. 116, 1097–1108, 2002). The physical cluster definition establishes that a system particle belongs to the cluster if it is (nonspecifically) bonded to other particles of the cluster along a finite time period τ (the residence time). Our theory has as main ingredients the Stillinger criterion of instantaneous connectivity, that involves a connectivity distance d, the generalized time-dependent pair distribution function of Oppenheim and Bloom that acts as a classical propagator and also the cluster pair correlation function for a weaker version of the physical clusters that requires connectivity just at the extremes of the time period no matter what happens in between. With these tools we express the time dependent pair connectedness function for the physical clusters in the strong sense as a path integral. The path integral is solved by means of a perturbation expansion where the nonperturbed connectedness function coincides with the generalized pair distribution function of Oppenheim and Bloom. We apply the theory to Lennard-Jones fluids at low densities and perform molecular dynamics simulations to check the goodness of diverse functions that appear in the theory. Fil: Vericat, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina Fil: Carlevaro, Carlos Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina Fil: Stoico, César Omar. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina Fil: Renzi, Danilo Germán. Universidad Nacional de Rosario. Facultad de Ciencias Veterinarias; Argentina |
| description |
In this article, dedicated to the memory of Lesser Blum, we develop a theory for the physical clusters which were introduced some time ago in our group (J. Chem Phys. 116, 1097–1108, 2002). The physical cluster definition establishes that a system particle belongs to the cluster if it is (nonspecifically) bonded to other particles of the cluster along a finite time period τ (the residence time). Our theory has as main ingredients the Stillinger criterion of instantaneous connectivity, that involves a connectivity distance d, the generalized time-dependent pair distribution function of Oppenheim and Bloom that acts as a classical propagator and also the cluster pair correlation function for a weaker version of the physical clusters that requires connectivity just at the extremes of the time period no matter what happens in between. With these tools we express the time dependent pair connectedness function for the physical clusters in the strong sense as a path integral. The path integral is solved by means of a perturbation expansion where the nonperturbed connectedness function coincides with the generalized pair distribution function of Oppenheim and Bloom. We apply the theory to Lennard-Jones fluids at low densities and perform molecular dynamics simulations to check the goodness of diverse functions that appear in the theory. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/51303 Vericat, Fernando; Carlevaro, Carlos Manuel; Stoico, César Omar; Renzi, Danilo Germán; Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition; Elsevier Science; Journal of Molecular Liquids; 270; 11-2017; 128-137 0167-7322 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/51303 |
| identifier_str_mv |
Vericat, Fernando; Carlevaro, Carlos Manuel; Stoico, César Omar; Renzi, Danilo Germán; Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a residence time in their definition; Elsevier Science; Journal of Molecular Liquids; 270; 11-2017; 128-137 0167-7322 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.molliq.2017.11.046 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167732217339740 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science |
| publisher.none.fl_str_mv |
Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781221166645248 |
| score |
12.982451 |