Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster

Autores
Erhard, Dirk; Martínez Linares, Julián Facundo; Poisat, Julien
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider a continuum percolation model on Rd , d ≥ 1. For t, λ ∈ (0,∞) and d ∈ {1, 2, 3}, the occupied set is given by the union of independent Brownian paths running up to time t whose initial points form a Poisson point process with intensity λ > 0. When d ≥ 4, the Brownian paths are replaced by Wiener sausages with radius r > 0. We establish that, for d = 1 and all choices of t, no percolation occurs, whereas for d ≥ 2, there is a non-trivial percolation transition in t, provided λ and r are chosen properly. The last statement means that λ has to be chosen to be strictly smaller than the critical percolation parameter for the occupied set at time zero (which is infinite when d ∈ {2, 3}, but finite and dependent on r when d ≥ 4). We further show that for all d ≥ 2, the unbounded cluster in the supercritical phase is unique. Along the way a finite box criterion for non-percolation in the Boolean model is extended to radius distributions with an exponential tail. This may be of independent interest. The present paper settles the basic properties of the model and should be viewed as a springboard for finer results.
Fil: Erhard, Dirk. University Of Warwick; Reino Unido
Fil: Martínez Linares, Julián Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Poisat, Julien. Université Paris-Dauphine; Francia
Materia
Continuum Percolation
Brownian Motion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18886

id CONICETDig_a381b86b493fffed6b68f9f3c241de32
oai_identifier_str oai:ri.conicet.gov.ar:11336/18886
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded ClusterErhard, DirkMartínez Linares, Julián FacundoPoisat, JulienContinuum PercolationBrownian Motionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider a continuum percolation model on Rd , d ≥ 1. For t, λ ∈ (0,∞) and d ∈ {1, 2, 3}, the occupied set is given by the union of independent Brownian paths running up to time t whose initial points form a Poisson point process with intensity λ > 0. When d ≥ 4, the Brownian paths are replaced by Wiener sausages with radius r > 0. We establish that, for d = 1 and all choices of t, no percolation occurs, whereas for d ≥ 2, there is a non-trivial percolation transition in t, provided λ and r are chosen properly. The last statement means that λ has to be chosen to be strictly smaller than the critical percolation parameter for the occupied set at time zero (which is infinite when d ∈ {2, 3}, but finite and dependent on r when d ≥ 4). We further show that for all d ≥ 2, the unbounded cluster in the supercritical phase is unique. Along the way a finite box criterion for non-percolation in the Boolean model is extended to radius distributions with an exponential tail. This may be of independent interest. The present paper settles the basic properties of the model and should be viewed as a springboard for finer results.Fil: Erhard, Dirk. University Of Warwick; Reino UnidoFil: Martínez Linares, Julián Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Poisat, Julien. Université Paris-Dauphine; FranciaSpringer2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18886Erhard, Dirk; Martínez Linares, Julián Facundo; Poisat, Julien; Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster; Springer; Journal Of Theoretical Probability; 1-2016; 1-290894-98401572-9230CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10959-015-0661-5info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10959-015-0661-5info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1311.2907info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:21:58Zoai:ri.conicet.gov.ar:11336/18886instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:21:58.993CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster
title Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster
spellingShingle Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster
Erhard, Dirk
Continuum Percolation
Brownian Motion
title_short Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster
title_full Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster
title_fullStr Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster
title_full_unstemmed Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster
title_sort Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster
dc.creator.none.fl_str_mv Erhard, Dirk
Martínez Linares, Julián Facundo
Poisat, Julien
author Erhard, Dirk
author_facet Erhard, Dirk
Martínez Linares, Julián Facundo
Poisat, Julien
author_role author
author2 Martínez Linares, Julián Facundo
Poisat, Julien
author2_role author
author
dc.subject.none.fl_str_mv Continuum Percolation
Brownian Motion
topic Continuum Percolation
Brownian Motion
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider a continuum percolation model on Rd , d ≥ 1. For t, λ ∈ (0,∞) and d ∈ {1, 2, 3}, the occupied set is given by the union of independent Brownian paths running up to time t whose initial points form a Poisson point process with intensity λ > 0. When d ≥ 4, the Brownian paths are replaced by Wiener sausages with radius r > 0. We establish that, for d = 1 and all choices of t, no percolation occurs, whereas for d ≥ 2, there is a non-trivial percolation transition in t, provided λ and r are chosen properly. The last statement means that λ has to be chosen to be strictly smaller than the critical percolation parameter for the occupied set at time zero (which is infinite when d ∈ {2, 3}, but finite and dependent on r when d ≥ 4). We further show that for all d ≥ 2, the unbounded cluster in the supercritical phase is unique. Along the way a finite box criterion for non-percolation in the Boolean model is extended to radius distributions with an exponential tail. This may be of independent interest. The present paper settles the basic properties of the model and should be viewed as a springboard for finer results.
Fil: Erhard, Dirk. University Of Warwick; Reino Unido
Fil: Martínez Linares, Julián Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Poisat, Julien. Université Paris-Dauphine; Francia
description We consider a continuum percolation model on Rd , d ≥ 1. For t, λ ∈ (0,∞) and d ∈ {1, 2, 3}, the occupied set is given by the union of independent Brownian paths running up to time t whose initial points form a Poisson point process with intensity λ > 0. When d ≥ 4, the Brownian paths are replaced by Wiener sausages with radius r > 0. We establish that, for d = 1 and all choices of t, no percolation occurs, whereas for d ≥ 2, there is a non-trivial percolation transition in t, provided λ and r are chosen properly. The last statement means that λ has to be chosen to be strictly smaller than the critical percolation parameter for the occupied set at time zero (which is infinite when d ∈ {2, 3}, but finite and dependent on r when d ≥ 4). We further show that for all d ≥ 2, the unbounded cluster in the supercritical phase is unique. Along the way a finite box criterion for non-percolation in the Boolean model is extended to radius distributions with an exponential tail. This may be of independent interest. The present paper settles the basic properties of the model and should be viewed as a springboard for finer results.
publishDate 2016
dc.date.none.fl_str_mv 2016-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18886
Erhard, Dirk; Martínez Linares, Julián Facundo; Poisat, Julien; Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster; Springer; Journal Of Theoretical Probability; 1-2016; 1-29
0894-9840
1572-9230
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18886
identifier_str_mv Erhard, Dirk; Martínez Linares, Julián Facundo; Poisat, Julien; Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster; Springer; Journal Of Theoretical Probability; 1-2016; 1-29
0894-9840
1572-9230
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10959-015-0661-5
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10959-015-0661-5
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1311.2907
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614210216001536
score 13.070432