Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster
- Autores
- Erhard, Dirk; Martínez Linares, Julián Facundo; Poisat, Julien
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider a continuum percolation model on Rd , d ≥ 1. For t, λ ∈ (0,∞) and d ∈ {1, 2, 3}, the occupied set is given by the union of independent Brownian paths running up to time t whose initial points form a Poisson point process with intensity λ > 0. When d ≥ 4, the Brownian paths are replaced by Wiener sausages with radius r > 0. We establish that, for d = 1 and all choices of t, no percolation occurs, whereas for d ≥ 2, there is a non-trivial percolation transition in t, provided λ and r are chosen properly. The last statement means that λ has to be chosen to be strictly smaller than the critical percolation parameter for the occupied set at time zero (which is infinite when d ∈ {2, 3}, but finite and dependent on r when d ≥ 4). We further show that for all d ≥ 2, the unbounded cluster in the supercritical phase is unique. Along the way a finite box criterion for non-percolation in the Boolean model is extended to radius distributions with an exponential tail. This may be of independent interest. The present paper settles the basic properties of the model and should be viewed as a springboard for finer results.
Fil: Erhard, Dirk. University Of Warwick; Reino Unido
Fil: Martínez Linares, Julián Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Poisat, Julien. Université Paris-Dauphine; Francia - Materia
-
Continuum Percolation
Brownian Motion - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18886
Ver los metadatos del registro completo
id |
CONICETDig_a381b86b493fffed6b68f9f3c241de32 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18886 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded ClusterErhard, DirkMartínez Linares, Julián FacundoPoisat, JulienContinuum PercolationBrownian Motionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider a continuum percolation model on Rd , d ≥ 1. For t, λ ∈ (0,∞) and d ∈ {1, 2, 3}, the occupied set is given by the union of independent Brownian paths running up to time t whose initial points form a Poisson point process with intensity λ > 0. When d ≥ 4, the Brownian paths are replaced by Wiener sausages with radius r > 0. We establish that, for d = 1 and all choices of t, no percolation occurs, whereas for d ≥ 2, there is a non-trivial percolation transition in t, provided λ and r are chosen properly. The last statement means that λ has to be chosen to be strictly smaller than the critical percolation parameter for the occupied set at time zero (which is infinite when d ∈ {2, 3}, but finite and dependent on r when d ≥ 4). We further show that for all d ≥ 2, the unbounded cluster in the supercritical phase is unique. Along the way a finite box criterion for non-percolation in the Boolean model is extended to radius distributions with an exponential tail. This may be of independent interest. The present paper settles the basic properties of the model and should be viewed as a springboard for finer results.Fil: Erhard, Dirk. University Of Warwick; Reino UnidoFil: Martínez Linares, Julián Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Poisat, Julien. Université Paris-Dauphine; FranciaSpringer2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18886Erhard, Dirk; Martínez Linares, Julián Facundo; Poisat, Julien; Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster; Springer; Journal Of Theoretical Probability; 1-2016; 1-290894-98401572-9230CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10959-015-0661-5info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10959-015-0661-5info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1311.2907info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:21:58Zoai:ri.conicet.gov.ar:11336/18886instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:21:58.993CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster |
title |
Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster |
spellingShingle |
Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster Erhard, Dirk Continuum Percolation Brownian Motion |
title_short |
Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster |
title_full |
Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster |
title_fullStr |
Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster |
title_full_unstemmed |
Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster |
title_sort |
Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster |
dc.creator.none.fl_str_mv |
Erhard, Dirk Martínez Linares, Julián Facundo Poisat, Julien |
author |
Erhard, Dirk |
author_facet |
Erhard, Dirk Martínez Linares, Julián Facundo Poisat, Julien |
author_role |
author |
author2 |
Martínez Linares, Julián Facundo Poisat, Julien |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Continuum Percolation Brownian Motion |
topic |
Continuum Percolation Brownian Motion |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider a continuum percolation model on Rd , d ≥ 1. For t, λ ∈ (0,∞) and d ∈ {1, 2, 3}, the occupied set is given by the union of independent Brownian paths running up to time t whose initial points form a Poisson point process with intensity λ > 0. When d ≥ 4, the Brownian paths are replaced by Wiener sausages with radius r > 0. We establish that, for d = 1 and all choices of t, no percolation occurs, whereas for d ≥ 2, there is a non-trivial percolation transition in t, provided λ and r are chosen properly. The last statement means that λ has to be chosen to be strictly smaller than the critical percolation parameter for the occupied set at time zero (which is infinite when d ∈ {2, 3}, but finite and dependent on r when d ≥ 4). We further show that for all d ≥ 2, the unbounded cluster in the supercritical phase is unique. Along the way a finite box criterion for non-percolation in the Boolean model is extended to radius distributions with an exponential tail. This may be of independent interest. The present paper settles the basic properties of the model and should be viewed as a springboard for finer results. Fil: Erhard, Dirk. University Of Warwick; Reino Unido Fil: Martínez Linares, Julián Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Poisat, Julien. Université Paris-Dauphine; Francia |
description |
We consider a continuum percolation model on Rd , d ≥ 1. For t, λ ∈ (0,∞) and d ∈ {1, 2, 3}, the occupied set is given by the union of independent Brownian paths running up to time t whose initial points form a Poisson point process with intensity λ > 0. When d ≥ 4, the Brownian paths are replaced by Wiener sausages with radius r > 0. We establish that, for d = 1 and all choices of t, no percolation occurs, whereas for d ≥ 2, there is a non-trivial percolation transition in t, provided λ and r are chosen properly. The last statement means that λ has to be chosen to be strictly smaller than the critical percolation parameter for the occupied set at time zero (which is infinite when d ∈ {2, 3}, but finite and dependent on r when d ≥ 4). We further show that for all d ≥ 2, the unbounded cluster in the supercritical phase is unique. Along the way a finite box criterion for non-percolation in the Boolean model is extended to radius distributions with an exponential tail. This may be of independent interest. The present paper settles the basic properties of the model and should be viewed as a springboard for finer results. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18886 Erhard, Dirk; Martínez Linares, Julián Facundo; Poisat, Julien; Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster; Springer; Journal Of Theoretical Probability; 1-2016; 1-29 0894-9840 1572-9230 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18886 |
identifier_str_mv |
Erhard, Dirk; Martínez Linares, Julián Facundo; Poisat, Julien; Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster; Springer; Journal Of Theoretical Probability; 1-2016; 1-29 0894-9840 1572-9230 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10959-015-0661-5 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10959-015-0661-5 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1311.2907 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614210216001536 |
score |
13.070432 |