Bootstrap rápido y robusto para datos dependientes: estimador de la función de autocorrelación en modelos ar(1) con múltiples outliers
- Autores
- Bussi, Javier; Marí, Gonzalo Pablo Domingo; Méndez, Fernanda
- Año de publicación
- 2016
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión aceptada
- Descripción
- Los métodos de replicaciones para la estimación de la FAC de un modelo de serie de tiempo AR(1) presentaron resultados diversos cuando se presentan ciertos porcentajes de contaminación. El estimador basado en el método FRB parece ser una buena alternativa al estimador altamente robusto MG ya que resulta tener un comportamiento similar en los casos simulados. Los restantes estimadores parecieran ser inferiores tanto en sesgo como en error cuadrático medio y mediano, en particular los estimadores Jackknife.
La función de autocorrelación (FAC) es una herramienta fundamental en el análisis de series de tiempo lineales. La estimación muestral de la FAC es altamente sensible a la presencia de observaciones extremas. El objetivo del presente trabajo es comparar el estimador obtenido a través de una adaptación del método Bootstrap Rápido y Robusto (FRB según sus siglas en inglés) para estimar la FAC, con distintos estimadores propuestos en la literatura para datos dependientes. Esta comparación se realiza a través del sesgo medio y mediano y el Error Cuadrático Medio y Mediano. Cuatro de estos estimadores son variaciones basadas en la técnica Jackknife para series de tiempo con bloques móviles, tres estimadores contemplan por un lado al estimador clásico y por el otro a este mismo con observaciones truncadas al 2% y 5%. El restante es un estimador MG altamente robusto propuesto por Ma y Genton. Se comparan las estimaciones para el rezago de orden 1 de la FAC de un modelo AR(1) bajo distintos escenarios de simulación que proponían distintas longitudes de series (n=60,120,180), distintos porcentajes (5%,10%) y ocurrencias en el tiempo (principio/medio/final) de la contaminación y distintos valores del parámetro del modelo ( �=±0,9; ±0,6, ±0,3). El estimador basado en el método FRB resulta tener un comportamiento similar al estimador altamente robusto MG, y superior a todos los restantes estimadores, tanto desde el punto de vista del sesgo como del error cuadrático. Los estimadores basados en la técnica Jackknife resultaron tener comportamientos más pobres entre los estimadores robustos
Fil: Fil: Bussi, Javier - Facultad Ciencias Económicas y Estadística - Universidad Nacional de Rosario - Argentina - Materia
-
Función de autocorrelación
Estimadores robustos
jackknife fast robust bootstrap - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Atribución – No Comercial – Compartir Igual (by-nc-sa)
- Repositorio
- Institución
- Universidad Nacional de Rosario
- OAI Identificador
- oai:rephip.unr.edu.ar:2133/7612
Ver los metadatos del registro completo
id |
RepHipUNR_5f2f4a49fd7dec2815e78893c57ba1a3 |
---|---|
oai_identifier_str |
oai:rephip.unr.edu.ar:2133/7612 |
network_acronym_str |
RepHipUNR |
repository_id_str |
1550 |
network_name_str |
RepHipUNR (UNR) |
spelling |
Bootstrap rápido y robusto para datos dependientes: estimador de la función de autocorrelación en modelos ar(1) con múltiples outliersBussi, JavierMarí, Gonzalo Pablo DomingoMéndez, FernandaFunción de autocorrelaciónEstimadores robustosjackknife fast robust bootstrapLos métodos de replicaciones para la estimación de la FAC de un modelo de serie de tiempo AR(1) presentaron resultados diversos cuando se presentan ciertos porcentajes de contaminación. El estimador basado en el método FRB parece ser una buena alternativa al estimador altamente robusto MG ya que resulta tener un comportamiento similar en los casos simulados. Los restantes estimadores parecieran ser inferiores tanto en sesgo como en error cuadrático medio y mediano, en particular los estimadores Jackknife.La función de autocorrelación (FAC) es una herramienta fundamental en el análisis de series de tiempo lineales. La estimación muestral de la FAC es altamente sensible a la presencia de observaciones extremas. El objetivo del presente trabajo es comparar el estimador obtenido a través de una adaptación del método Bootstrap Rápido y Robusto (FRB según sus siglas en inglés) para estimar la FAC, con distintos estimadores propuestos en la literatura para datos dependientes. Esta comparación se realiza a través del sesgo medio y mediano y el Error Cuadrático Medio y Mediano. Cuatro de estos estimadores son variaciones basadas en la técnica Jackknife para series de tiempo con bloques móviles, tres estimadores contemplan por un lado al estimador clásico y por el otro a este mismo con observaciones truncadas al 2% y 5%. El restante es un estimador MG altamente robusto propuesto por Ma y Genton. Se comparan las estimaciones para el rezago de orden 1 de la FAC de un modelo AR(1) bajo distintos escenarios de simulación que proponían distintas longitudes de series (n=60,120,180), distintos porcentajes (5%,10%) y ocurrencias en el tiempo (principio/medio/final) de la contaminación y distintos valores del parámetro del modelo ( �=±0,9; ±0,6, ±0,3). El estimador basado en el método FRB resulta tener un comportamiento similar al estimador altamente robusto MG, y superior a todos los restantes estimadores, tanto desde el punto de vista del sesgo como del error cuadrático. Los estimadores basados en la técnica Jackknife resultaron tener comportamientos más pobres entre los estimadores robustosFil: Fil: Bussi, Javier - Facultad Ciencias Económicas y Estadística - Universidad Nacional de Rosario - ArgentinaSecretaría de Ciencia y Tecnología. Facultad de Ciencias Económicas y Estadística. Universidad Nacional de Rosario2016-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://hdl.handle.net/2133/7612urn:issn: 1668-5008spahttps://www.fcecon.unr.edu.ar/web-nueva/investigacion/actas-de-las-jornadas-anualesinfo:eu-repo/semantics/openAccessAtribución – No Comercial – Compartir Igual (by-nc-sa)http://creativecommons.org/licenses/by-nc-sa/2.5/ar/Licencia RepHipreponame:RepHipUNR (UNR)instname:Universidad Nacional de Rosario2025-09-04T09:45:42Zoai:rephip.unr.edu.ar:2133/7612instacron:UNRInstitucionalhttps://rephip.unr.edu.ar/Universidad públicaNo correspondehttps://rephip.unr.edu.ar/oai/requestrephip@unr.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:15502025-09-04 09:45:42.675RepHipUNR (UNR) - Universidad Nacional de Rosariofalse |
dc.title.none.fl_str_mv |
Bootstrap rápido y robusto para datos dependientes: estimador de la función de autocorrelación en modelos ar(1) con múltiples outliers |
title |
Bootstrap rápido y robusto para datos dependientes: estimador de la función de autocorrelación en modelos ar(1) con múltiples outliers |
spellingShingle |
Bootstrap rápido y robusto para datos dependientes: estimador de la función de autocorrelación en modelos ar(1) con múltiples outliers Bussi, Javier Función de autocorrelación Estimadores robustos jackknife fast robust bootstrap |
title_short |
Bootstrap rápido y robusto para datos dependientes: estimador de la función de autocorrelación en modelos ar(1) con múltiples outliers |
title_full |
Bootstrap rápido y robusto para datos dependientes: estimador de la función de autocorrelación en modelos ar(1) con múltiples outliers |
title_fullStr |
Bootstrap rápido y robusto para datos dependientes: estimador de la función de autocorrelación en modelos ar(1) con múltiples outliers |
title_full_unstemmed |
Bootstrap rápido y robusto para datos dependientes: estimador de la función de autocorrelación en modelos ar(1) con múltiples outliers |
title_sort |
Bootstrap rápido y robusto para datos dependientes: estimador de la función de autocorrelación en modelos ar(1) con múltiples outliers |
dc.creator.none.fl_str_mv |
Bussi, Javier Marí, Gonzalo Pablo Domingo Méndez, Fernanda |
author |
Bussi, Javier |
author_facet |
Bussi, Javier Marí, Gonzalo Pablo Domingo Méndez, Fernanda |
author_role |
author |
author2 |
Marí, Gonzalo Pablo Domingo Méndez, Fernanda |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Secretaría de Ciencia y Tecnología. Facultad de Ciencias Económicas y Estadística. Universidad Nacional de Rosario |
dc.subject.none.fl_str_mv |
Función de autocorrelación Estimadores robustos jackknife fast robust bootstrap |
topic |
Función de autocorrelación Estimadores robustos jackknife fast robust bootstrap |
dc.description.none.fl_txt_mv |
Los métodos de replicaciones para la estimación de la FAC de un modelo de serie de tiempo AR(1) presentaron resultados diversos cuando se presentan ciertos porcentajes de contaminación. El estimador basado en el método FRB parece ser una buena alternativa al estimador altamente robusto MG ya que resulta tener un comportamiento similar en los casos simulados. Los restantes estimadores parecieran ser inferiores tanto en sesgo como en error cuadrático medio y mediano, en particular los estimadores Jackknife. La función de autocorrelación (FAC) es una herramienta fundamental en el análisis de series de tiempo lineales. La estimación muestral de la FAC es altamente sensible a la presencia de observaciones extremas. El objetivo del presente trabajo es comparar el estimador obtenido a través de una adaptación del método Bootstrap Rápido y Robusto (FRB según sus siglas en inglés) para estimar la FAC, con distintos estimadores propuestos en la literatura para datos dependientes. Esta comparación se realiza a través del sesgo medio y mediano y el Error Cuadrático Medio y Mediano. Cuatro de estos estimadores son variaciones basadas en la técnica Jackknife para series de tiempo con bloques móviles, tres estimadores contemplan por un lado al estimador clásico y por el otro a este mismo con observaciones truncadas al 2% y 5%. El restante es un estimador MG altamente robusto propuesto por Ma y Genton. Se comparan las estimaciones para el rezago de orden 1 de la FAC de un modelo AR(1) bajo distintos escenarios de simulación que proponían distintas longitudes de series (n=60,120,180), distintos porcentajes (5%,10%) y ocurrencias en el tiempo (principio/medio/final) de la contaminación y distintos valores del parámetro del modelo ( �=±0,9; ±0,6, ±0,3). El estimador basado en el método FRB resulta tener un comportamiento similar al estimador altamente robusto MG, y superior a todos los restantes estimadores, tanto desde el punto de vista del sesgo como del error cuadrático. Los estimadores basados en la técnica Jackknife resultaron tener comportamientos más pobres entre los estimadores robustos Fil: Fil: Bussi, Javier - Facultad Ciencias Económicas y Estadística - Universidad Nacional de Rosario - Argentina |
description |
Los métodos de replicaciones para la estimación de la FAC de un modelo de serie de tiempo AR(1) presentaron resultados diversos cuando se presentan ciertos porcentajes de contaminación. El estimador basado en el método FRB parece ser una buena alternativa al estimador altamente robusto MG ya que resulta tener un comportamiento similar en los casos simulados. Los restantes estimadores parecieran ser inferiores tanto en sesgo como en error cuadrático medio y mediano, en particular los estimadores Jackknife. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/2133/7612 urn:issn: 1668-5008 |
url |
http://hdl.handle.net/2133/7612 |
identifier_str_mv |
urn:issn: 1668-5008 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://www.fcecon.unr.edu.ar/web-nueva/investigacion/actas-de-las-jornadas-anuales |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess Atribución – No Comercial – Compartir Igual (by-nc-sa) http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Licencia RepHip |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Atribución – No Comercial – Compartir Igual (by-nc-sa) http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Licencia RepHip |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:RepHipUNR (UNR) instname:Universidad Nacional de Rosario |
reponame_str |
RepHipUNR (UNR) |
collection |
RepHipUNR (UNR) |
instname_str |
Universidad Nacional de Rosario |
repository.name.fl_str_mv |
RepHipUNR (UNR) - Universidad Nacional de Rosario |
repository.mail.fl_str_mv |
rephip@unr.edu.ar |
_version_ |
1842340758821011456 |
score |
12.623145 |