Robust bootstrap: an alternative to bootstrapping robust estimators
- Autores
- Amado, Conceicao; Bianco, Ana Maria; Boente Boente, Graciela Lina; Pires, Ana M.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- There is a vast literature on robust estimators, but in some situations it is still not easy to make inferences, such as confidence regions and hypothesis testing. This is mainly due to the following facts. On one hand, in most situations, it is difficult to derive the exact distribution of the estimator. On the other one, even if its asymptotic behaviour is known, in many cases, the convergence to the limiting distribution may be rather slow, so bootstrap methods are preferable since they often give better small sample results. However, resampling methods have several disadvantages including the propagation of anomalous data all along the new samples. In this paper, we discuss the problems arising in the bootstrap when outlying observations are present. We argue that it is preferable to use a robust bootstrap rather than to bootstrap robust estimators and we discuss a robust bootstrap method, the Influence Function Bootstrap denoted IFB. We illustrate the performance of the IFB intervals in the univariate location case and in the logistic regression model. We derive some asymptotic properties of the IFB. Finally, we introduce a generalization of the Influence Function Bootstrap in order to improve the IFB behaviour.
Fil: Amado, Conceicao. Universidade de Lisboa; Portugal
Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Pires, Ana M.. Universidade de Lisboa; Portugal - Materia
-
INFLUENCE FUNCTION
RESAMPLING METHODS
ROBUST INFERENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18748
Ver los metadatos del registro completo
id |
CONICETDig_4a72c909e211fba566e1867e4c3d0ac7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18748 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust bootstrap: an alternative to bootstrapping robust estimatorsAmado, ConceicaoBianco, Ana MariaBoente Boente, Graciela LinaPires, Ana M.INFLUENCE FUNCTIONRESAMPLING METHODSROBUST INFERENCEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1There is a vast literature on robust estimators, but in some situations it is still not easy to make inferences, such as confidence regions and hypothesis testing. This is mainly due to the following facts. On one hand, in most situations, it is difficult to derive the exact distribution of the estimator. On the other one, even if its asymptotic behaviour is known, in many cases, the convergence to the limiting distribution may be rather slow, so bootstrap methods are preferable since they often give better small sample results. However, resampling methods have several disadvantages including the propagation of anomalous data all along the new samples. In this paper, we discuss the problems arising in the bootstrap when outlying observations are present. We argue that it is preferable to use a robust bootstrap rather than to bootstrap robust estimators and we discuss a robust bootstrap method, the Influence Function Bootstrap denoted IFB. We illustrate the performance of the IFB intervals in the univariate location case and in the logistic regression model. We derive some asymptotic properties of the IFB. Finally, we introduce a generalization of the Influence Function Bootstrap in order to improve the IFB behaviour.Fil: Amado, Conceicao. Universidade de Lisboa; PortugalFil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaFil: Pires, Ana M.. Universidade de Lisboa; PortugalInstituto Nacional de Estatística2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18748Amado, Conceicao; Bianco, Ana Maria; Boente Boente, Graciela Lina; Pires, Ana M.; Robust bootstrap: an alternative to bootstrapping robust estimators; Instituto Nacional de Estatística; Revstat Statistical Journal; 12; 2; 6-2014; 169-1971645-6726CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ine.pt/revstat/pdf/rs140205.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:05Zoai:ri.conicet.gov.ar:11336/18748instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:06.126CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust bootstrap: an alternative to bootstrapping robust estimators |
title |
Robust bootstrap: an alternative to bootstrapping robust estimators |
spellingShingle |
Robust bootstrap: an alternative to bootstrapping robust estimators Amado, Conceicao INFLUENCE FUNCTION RESAMPLING METHODS ROBUST INFERENCE |
title_short |
Robust bootstrap: an alternative to bootstrapping robust estimators |
title_full |
Robust bootstrap: an alternative to bootstrapping robust estimators |
title_fullStr |
Robust bootstrap: an alternative to bootstrapping robust estimators |
title_full_unstemmed |
Robust bootstrap: an alternative to bootstrapping robust estimators |
title_sort |
Robust bootstrap: an alternative to bootstrapping robust estimators |
dc.creator.none.fl_str_mv |
Amado, Conceicao Bianco, Ana Maria Boente Boente, Graciela Lina Pires, Ana M. |
author |
Amado, Conceicao |
author_facet |
Amado, Conceicao Bianco, Ana Maria Boente Boente, Graciela Lina Pires, Ana M. |
author_role |
author |
author2 |
Bianco, Ana Maria Boente Boente, Graciela Lina Pires, Ana M. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
INFLUENCE FUNCTION RESAMPLING METHODS ROBUST INFERENCE |
topic |
INFLUENCE FUNCTION RESAMPLING METHODS ROBUST INFERENCE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
There is a vast literature on robust estimators, but in some situations it is still not easy to make inferences, such as confidence regions and hypothesis testing. This is mainly due to the following facts. On one hand, in most situations, it is difficult to derive the exact distribution of the estimator. On the other one, even if its asymptotic behaviour is known, in many cases, the convergence to the limiting distribution may be rather slow, so bootstrap methods are preferable since they often give better small sample results. However, resampling methods have several disadvantages including the propagation of anomalous data all along the new samples. In this paper, we discuss the problems arising in the bootstrap when outlying observations are present. We argue that it is preferable to use a robust bootstrap rather than to bootstrap robust estimators and we discuss a robust bootstrap method, the Influence Function Bootstrap denoted IFB. We illustrate the performance of the IFB intervals in the univariate location case and in the logistic regression model. We derive some asymptotic properties of the IFB. Finally, we introduce a generalization of the Influence Function Bootstrap in order to improve the IFB behaviour. Fil: Amado, Conceicao. Universidade de Lisboa; Portugal Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina Fil: Pires, Ana M.. Universidade de Lisboa; Portugal |
description |
There is a vast literature on robust estimators, but in some situations it is still not easy to make inferences, such as confidence regions and hypothesis testing. This is mainly due to the following facts. On one hand, in most situations, it is difficult to derive the exact distribution of the estimator. On the other one, even if its asymptotic behaviour is known, in many cases, the convergence to the limiting distribution may be rather slow, so bootstrap methods are preferable since they often give better small sample results. However, resampling methods have several disadvantages including the propagation of anomalous data all along the new samples. In this paper, we discuss the problems arising in the bootstrap when outlying observations are present. We argue that it is preferable to use a robust bootstrap rather than to bootstrap robust estimators and we discuss a robust bootstrap method, the Influence Function Bootstrap denoted IFB. We illustrate the performance of the IFB intervals in the univariate location case and in the logistic regression model. We derive some asymptotic properties of the IFB. Finally, we introduce a generalization of the Influence Function Bootstrap in order to improve the IFB behaviour. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18748 Amado, Conceicao; Bianco, Ana Maria; Boente Boente, Graciela Lina; Pires, Ana M.; Robust bootstrap: an alternative to bootstrapping robust estimators; Instituto Nacional de Estatística; Revstat Statistical Journal; 12; 2; 6-2014; 169-197 1645-6726 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18748 |
identifier_str_mv |
Amado, Conceicao; Bianco, Ana Maria; Boente Boente, Graciela Lina; Pires, Ana M.; Robust bootstrap: an alternative to bootstrapping robust estimators; Instituto Nacional de Estatística; Revstat Statistical Journal; 12; 2; 6-2014; 169-197 1645-6726 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ine.pt/revstat/pdf/rs140205.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Nacional de Estatística |
publisher.none.fl_str_mv |
Instituto Nacional de Estatística |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269135845720064 |
score |
13.13397 |