Propagación de Ondas de Crecidas

Autores
Basile, Pedro A.
Año de publicación
2017
Idioma
español castellano
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
La propagación de una crecida se define, en forma básica, como el procedimiento de cálculo requerido para determinar el hidrograma en una determinada sección del curso de agua, partiendo de un hidrograma conocido en una sección aguas arriba. El cálculo se efectúa mediante la implementación de modelos matemáticos los cuales resuelven numéricamente las ecuaciones que gobiernan la dinámica del proceso físico. Desde el punto de vista hidráulico el tránsito de una crecida establece un régimen de flujo impermanente gradualmente variado. La descripción unidimensional completa del proceso puede efectuarse en función de dos variables dependientes del tiempo t y del espacio x: Q(x,t) y h(x,t), donde Q y h son el caudal y la profundidad de la corriente hídrica respectivamente. Evidentemente es necesario contar con dos ecuaciones para poder resolver el problema. En el caso de los modelos hidrodinámicos, las mismas están representadas por las ecuaciones de continuidad y cantidad de movimiento, conocidas como ecuaciones de Barré de Saint Venant debido al desarrollo efectuado por el mismo autor en 1871. Existen además modelos simplificados de propagación del tipo “hidrológico” los cuales se basan en la ecuación de continuidad integrada en un segmento elemental de traslado y en una función de almacenamiento, como por ejemplo, el modelo desarrollado por Mc Carthy (1938) y aplicado por primera vez en el río Muskingum, el cual es conocido como Método de Muskingum. En este Capítulo se describen los distintos tipos de modelos hidrodinámicos, analizando las ecuaciones de continuidad y cantidad de movimiento con sus posibles simplificaciones. Se realiza, además, una breve introducción a la técnica de diferencias finitas utilizada para resolver las ecuaciones. Finalmente se presenta el método de propagación del tipo hidrológico.
Materia
Propagación de crecidas
Flujo impermanente
Modelos hidrodinámicos
Modelos hidrológicos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
RepHipUNR (UNR)
Institución
Universidad Nacional de Rosario
OAI Identificador
oai:rephip.unr.edu.ar:2133/23800

id RepHipUNR_369bb56f200e11f9f7d79b3585429f18
oai_identifier_str oai:rephip.unr.edu.ar:2133/23800
network_acronym_str RepHipUNR
repository_id_str 1550
network_name_str RepHipUNR (UNR)
spelling Propagación de Ondas de CrecidasBasile, Pedro A.Propagación de crecidasFlujo impermanenteModelos hidrodinámicosModelos hidrológicosLa propagación de una crecida se define, en forma básica, como el procedimiento de cálculo requerido para determinar el hidrograma en una determinada sección del curso de agua, partiendo de un hidrograma conocido en una sección aguas arriba. El cálculo se efectúa mediante la implementación de modelos matemáticos los cuales resuelven numéricamente las ecuaciones que gobiernan la dinámica del proceso físico. Desde el punto de vista hidráulico el tránsito de una crecida establece un régimen de flujo impermanente gradualmente variado. La descripción unidimensional completa del proceso puede efectuarse en función de dos variables dependientes del tiempo t y del espacio x: Q(x,t) y h(x,t), donde Q y h son el caudal y la profundidad de la corriente hídrica respectivamente. Evidentemente es necesario contar con dos ecuaciones para poder resolver el problema. En el caso de los modelos hidrodinámicos, las mismas están representadas por las ecuaciones de continuidad y cantidad de movimiento, conocidas como ecuaciones de Barré de Saint Venant debido al desarrollo efectuado por el mismo autor en 1871. Existen además modelos simplificados de propagación del tipo “hidrológico” los cuales se basan en la ecuación de continuidad integrada en un segmento elemental de traslado y en una función de almacenamiento, como por ejemplo, el modelo desarrollado por Mc Carthy (1938) y aplicado por primera vez en el río Muskingum, el cual es conocido como Método de Muskingum. En este Capítulo se describen los distintos tipos de modelos hidrodinámicos, analizando las ecuaciones de continuidad y cantidad de movimiento con sus posibles simplificaciones. Se realiza, además, una breve introducción a la técnica de diferencias finitas utilizada para resolver las ecuaciones. Finalmente se presenta el método de propagación del tipo hidrológico.UNR Editora2017info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfhttp://hdl.handle.net/2133/23800urn:isbn: 978-987-702-214-8spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Licencia RepHipreponame:RepHipUNR (UNR)instname:Universidad Nacional de Rosario2025-09-29T13:41:33Zoai:rephip.unr.edu.ar:2133/23800instacron:UNRInstitucionalhttps://rephip.unr.edu.ar/Universidad públicaNo correspondehttps://rephip.unr.edu.ar/oai/requestrephip@unr.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:15502025-09-29 13:41:33.841RepHipUNR (UNR) - Universidad Nacional de Rosariofalse
dc.title.none.fl_str_mv Propagación de Ondas de Crecidas
title Propagación de Ondas de Crecidas
spellingShingle Propagación de Ondas de Crecidas
Basile, Pedro A.
Propagación de crecidas
Flujo impermanente
Modelos hidrodinámicos
Modelos hidrológicos
title_short Propagación de Ondas de Crecidas
title_full Propagación de Ondas de Crecidas
title_fullStr Propagación de Ondas de Crecidas
title_full_unstemmed Propagación de Ondas de Crecidas
title_sort Propagación de Ondas de Crecidas
dc.creator.none.fl_str_mv Basile, Pedro A.
author Basile, Pedro A.
author_facet Basile, Pedro A.
author_role author
dc.subject.none.fl_str_mv Propagación de crecidas
Flujo impermanente
Modelos hidrodinámicos
Modelos hidrológicos
topic Propagación de crecidas
Flujo impermanente
Modelos hidrodinámicos
Modelos hidrológicos
dc.description.none.fl_txt_mv La propagación de una crecida se define, en forma básica, como el procedimiento de cálculo requerido para determinar el hidrograma en una determinada sección del curso de agua, partiendo de un hidrograma conocido en una sección aguas arriba. El cálculo se efectúa mediante la implementación de modelos matemáticos los cuales resuelven numéricamente las ecuaciones que gobiernan la dinámica del proceso físico. Desde el punto de vista hidráulico el tránsito de una crecida establece un régimen de flujo impermanente gradualmente variado. La descripción unidimensional completa del proceso puede efectuarse en función de dos variables dependientes del tiempo t y del espacio x: Q(x,t) y h(x,t), donde Q y h son el caudal y la profundidad de la corriente hídrica respectivamente. Evidentemente es necesario contar con dos ecuaciones para poder resolver el problema. En el caso de los modelos hidrodinámicos, las mismas están representadas por las ecuaciones de continuidad y cantidad de movimiento, conocidas como ecuaciones de Barré de Saint Venant debido al desarrollo efectuado por el mismo autor en 1871. Existen además modelos simplificados de propagación del tipo “hidrológico” los cuales se basan en la ecuación de continuidad integrada en un segmento elemental de traslado y en una función de almacenamiento, como por ejemplo, el modelo desarrollado por Mc Carthy (1938) y aplicado por primera vez en el río Muskingum, el cual es conocido como Método de Muskingum. En este Capítulo se describen los distintos tipos de modelos hidrodinámicos, analizando las ecuaciones de continuidad y cantidad de movimiento con sus posibles simplificaciones. Se realiza, además, una breve introducción a la técnica de diferencias finitas utilizada para resolver las ecuaciones. Finalmente se presenta el método de propagación del tipo hidrológico.
description La propagación de una crecida se define, en forma básica, como el procedimiento de cálculo requerido para determinar el hidrograma en una determinada sección del curso de agua, partiendo de un hidrograma conocido en una sección aguas arriba. El cálculo se efectúa mediante la implementación de modelos matemáticos los cuales resuelven numéricamente las ecuaciones que gobiernan la dinámica del proceso físico. Desde el punto de vista hidráulico el tránsito de una crecida establece un régimen de flujo impermanente gradualmente variado. La descripción unidimensional completa del proceso puede efectuarse en función de dos variables dependientes del tiempo t y del espacio x: Q(x,t) y h(x,t), donde Q y h son el caudal y la profundidad de la corriente hídrica respectivamente. Evidentemente es necesario contar con dos ecuaciones para poder resolver el problema. En el caso de los modelos hidrodinámicos, las mismas están representadas por las ecuaciones de continuidad y cantidad de movimiento, conocidas como ecuaciones de Barré de Saint Venant debido al desarrollo efectuado por el mismo autor en 1871. Existen además modelos simplificados de propagación del tipo “hidrológico” los cuales se basan en la ecuación de continuidad integrada en un segmento elemental de traslado y en una función de almacenamiento, como por ejemplo, el modelo desarrollado por Mc Carthy (1938) y aplicado por primera vez en el río Muskingum, el cual es conocido como Método de Muskingum. En este Capítulo se describen los distintos tipos de modelos hidrodinámicos, analizando las ecuaciones de continuidad y cantidad de movimiento con sus posibles simplificaciones. Se realiza, además, una breve introducción a la técnica de diferencias finitas utilizada para resolver las ecuaciones. Finalmente se presenta el método de propagación del tipo hidrológico.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/bookPart


info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
format bookPart
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/2133/23800
urn:isbn: 978-987-702-214-8
url http://hdl.handle.net/2133/23800
identifier_str_mv urn:isbn: 978-987-702-214-8
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Licencia RepHip
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Licencia RepHip
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv UNR Editora
publisher.none.fl_str_mv UNR Editora
dc.source.none.fl_str_mv reponame:RepHipUNR (UNR)
instname:Universidad Nacional de Rosario
reponame_str RepHipUNR (UNR)
collection RepHipUNR (UNR)
instname_str Universidad Nacional de Rosario
repository.name.fl_str_mv RepHipUNR (UNR) - Universidad Nacional de Rosario
repository.mail.fl_str_mv rephip@unr.edu.ar
_version_ 1844618787412770816
score 13.070432