A note on geodesics of projections in the Calkin algebra

Autores
Andruchow, Esteban
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Let C(H) = B(H) / K(H) be the Calkin algebra (B(H) the algebra of bounded operators on the Hilbert space H, K(H) the ideal of compact operators, and π: B(H) → C(H) the quotient map), and PC(H) the differentiable manifold of selfadjoint projections in C(H). A projection p in C(H) can be lifted to a projection P∈ B(H) : π(P) = p. We show that, given p, q∈ PC(H), there exists a minimal geodesic of PC(H) which joins p and q if and only if there exist lifting projections P and Q such that either both N(P- Q± 1) are finite dimensional, or both are infinite dimensional. The minimal geodesic is unique if p+ q- 1 has trivial anhihilator. Here the assertion that a geodesic is minimal means that it is shorter than any other piecewise smooth curve γ(t) ∈ PC(H), t∈ I, joining the same endpoints, where the length of γ is measured by ∫ I‖ γ˙ (t) ‖ dt.
Fuente
Archiv Der Mathematik. Nov. 2020; 115(5): 545-553
https://link.springer.com/journal/13/volumes-and-issues/115-5
Materia
Calkin algebra
Geodesics of projections
Projections
Nivel de accesibilidad
acceso restringido
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional UNGS
Institución
Universidad Nacional de General Sarmiento
OAI Identificador
oai:repositorio.ungs.edu.ar:UNGS/1802

id RIUNGS_e082d14fbdb5190389670df67deccf14
oai_identifier_str oai:repositorio.ungs.edu.ar:UNGS/1802
network_acronym_str RIUNGS
repository_id_str
network_name_str Repositorio Institucional UNGS
spelling A note on geodesics of projections in the Calkin algebraAndruchow, EstebanCalkin algebraGeodesics of projectionsProjectionsFil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Let C(H) = B(H) / K(H) be the Calkin algebra (B(H) the algebra of bounded operators on the Hilbert space H, K(H) the ideal of compact operators, and π: B(H) → C(H) the quotient map), and PC(H) the differentiable manifold of selfadjoint projections in C(H). A projection p in C(H) can be lifted to a projection P∈ B(H) : π(P) = p. We show that, given p, q∈ PC(H), there exists a minimal geodesic of PC(H) which joins p and q if and only if there exist lifting projections P and Q such that either both N(P- Q± 1) are finite dimensional, or both are infinite dimensional. The minimal geodesic is unique if p+ q- 1 has trivial anhihilator. Here the assertion that a geodesic is minimal means that it is shorter than any other piecewise smooth curve γ(t) ∈ PC(H), t∈ I, joining the same endpoints, where the length of γ is measured by ∫ I‖ γ˙ (t) ‖ dt.Birkhauser Verlag Ag2024-12-23T13:21:45Z2024-12-23T13:21:45Z2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfAndruchow, E. (11-2020). A note on geodesics of projections in the Calkin algebra. Archiv Der Mathematik, 115(5), 545-553.0003-889Xhttp://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1802Archiv Der Mathematik. Nov. 2020; 115(5): 545-553https://link.springer.com/journal/13/volumes-and-issues/115-5reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttp://dx.doi.org/10.1007/s00013-020-01509-5info:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-09-04T11:43:11Zoai:repositorio.ungs.edu.ar:UNGS/1802instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-09-04 11:43:11.554Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse
dc.title.none.fl_str_mv A note on geodesics of projections in the Calkin algebra
title A note on geodesics of projections in the Calkin algebra
spellingShingle A note on geodesics of projections in the Calkin algebra
Andruchow, Esteban
Calkin algebra
Geodesics of projections
Projections
title_short A note on geodesics of projections in the Calkin algebra
title_full A note on geodesics of projections in the Calkin algebra
title_fullStr A note on geodesics of projections in the Calkin algebra
title_full_unstemmed A note on geodesics of projections in the Calkin algebra
title_sort A note on geodesics of projections in the Calkin algebra
dc.creator.none.fl_str_mv Andruchow, Esteban
author Andruchow, Esteban
author_facet Andruchow, Esteban
author_role author
dc.subject.none.fl_str_mv Calkin algebra
Geodesics of projections
Projections
topic Calkin algebra
Geodesics of projections
Projections
dc.description.none.fl_txt_mv Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Let C(H) = B(H) / K(H) be the Calkin algebra (B(H) the algebra of bounded operators on the Hilbert space H, K(H) the ideal of compact operators, and π: B(H) → C(H) the quotient map), and PC(H) the differentiable manifold of selfadjoint projections in C(H). A projection p in C(H) can be lifted to a projection P∈ B(H) : π(P) = p. We show that, given p, q∈ PC(H), there exists a minimal geodesic of PC(H) which joins p and q if and only if there exist lifting projections P and Q such that either both N(P- Q± 1) are finite dimensional, or both are infinite dimensional. The minimal geodesic is unique if p+ q- 1 has trivial anhihilator. Here the assertion that a geodesic is minimal means that it is shorter than any other piecewise smooth curve γ(t) ∈ PC(H), t∈ I, joining the same endpoints, where the length of γ is measured by ∫ I‖ γ˙ (t) ‖ dt.
description Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
publishDate 2020
dc.date.none.fl_str_mv 2020
2024-12-23T13:21:45Z
2024-12-23T13:21:45Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Andruchow, E. (11-2020). A note on geodesics of projections in the Calkin algebra. Archiv Der Mathematik, 115(5), 545-553.
0003-889X
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1802
identifier_str_mv Andruchow, E. (11-2020). A note on geodesics of projections in the Calkin algebra. Archiv Der Mathematik, 115(5), 545-553.
0003-889X
url http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1802
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://dx.doi.org/10.1007/s00013-020-01509-5
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Birkhauser Verlag Ag
publisher.none.fl_str_mv Birkhauser Verlag Ag
dc.source.none.fl_str_mv Archiv Der Mathematik. Nov. 2020; 115(5): 545-553
https://link.springer.com/journal/13/volumes-and-issues/115-5
reponame:Repositorio Institucional UNGS
instname:Universidad Nacional de General Sarmiento
reponame_str Repositorio Institucional UNGS
collection Repositorio Institucional UNGS
instname_str Universidad Nacional de General Sarmiento
repository.name.fl_str_mv Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento
repository.mail.fl_str_mv ubyd@campus.ungs.edu.ar
_version_ 1842346539861671936
score 12.623145