A note on geodesics of projections in the Calkin algebra
- Autores
- Andruchow, Esteban
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Let C(H) = B(H) / K(H) be the Calkin algebra (B(H) the algebra of bounded operators on the Hilbert space H, K(H) the ideal of compact operators, and π: B(H) → C(H) the quotient map), and PC(H) the differentiable manifold of selfadjoint projections in C(H). A projection p in C(H) can be lifted to a projection P∈ B(H) : π(P) = p. We show that, given p, q∈ PC(H), there exists a minimal geodesic of PC(H) which joins p and q if and only if there exist lifting projections P and Q such that either both N(P- Q± 1) are finite dimensional, or both are infinite dimensional. The minimal geodesic is unique if p+ q- 1 has trivial anhihilator. Here the assertion that a geodesic is minimal means that it is shorter than any other piecewise smooth curve γ(t) ∈ PC(H), t∈ I, joining the same endpoints, where the length of γ is measured by ∫ I‖ γ˙ (t) ‖ dt. - Fuente
- Archiv Der Mathematik. Nov. 2020; 115(5): 545-553
https://link.springer.com/journal/13/volumes-and-issues/115-5 - Materia
-
Calkin algebra
Geodesics of projections
Projections - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de General Sarmiento
- OAI Identificador
- oai:repositorio.ungs.edu.ar:UNGS/1802
Ver los metadatos del registro completo
id |
RIUNGS_e082d14fbdb5190389670df67deccf14 |
---|---|
oai_identifier_str |
oai:repositorio.ungs.edu.ar:UNGS/1802 |
network_acronym_str |
RIUNGS |
repository_id_str |
|
network_name_str |
Repositorio Institucional UNGS |
spelling |
A note on geodesics of projections in the Calkin algebraAndruchow, EstebanCalkin algebraGeodesics of projectionsProjectionsFil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Let C(H) = B(H) / K(H) be the Calkin algebra (B(H) the algebra of bounded operators on the Hilbert space H, K(H) the ideal of compact operators, and π: B(H) → C(H) the quotient map), and PC(H) the differentiable manifold of selfadjoint projections in C(H). A projection p in C(H) can be lifted to a projection P∈ B(H) : π(P) = p. We show that, given p, q∈ PC(H), there exists a minimal geodesic of PC(H) which joins p and q if and only if there exist lifting projections P and Q such that either both N(P- Q± 1) are finite dimensional, or both are infinite dimensional. The minimal geodesic is unique if p+ q- 1 has trivial anhihilator. Here the assertion that a geodesic is minimal means that it is shorter than any other piecewise smooth curve γ(t) ∈ PC(H), t∈ I, joining the same endpoints, where the length of γ is measured by ∫ I‖ γ˙ (t) ‖ dt.Birkhauser Verlag Ag2024-12-23T13:21:45Z2024-12-23T13:21:45Z2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfAndruchow, E. (11-2020). A note on geodesics of projections in the Calkin algebra. Archiv Der Mathematik, 115(5), 545-553.0003-889Xhttp://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1802Archiv Der Mathematik. Nov. 2020; 115(5): 545-553https://link.springer.com/journal/13/volumes-and-issues/115-5reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttp://dx.doi.org/10.1007/s00013-020-01509-5info:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-09-04T11:43:11Zoai:repositorio.ungs.edu.ar:UNGS/1802instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-09-04 11:43:11.554Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse |
dc.title.none.fl_str_mv |
A note on geodesics of projections in the Calkin algebra |
title |
A note on geodesics of projections in the Calkin algebra |
spellingShingle |
A note on geodesics of projections in the Calkin algebra Andruchow, Esteban Calkin algebra Geodesics of projections Projections |
title_short |
A note on geodesics of projections in the Calkin algebra |
title_full |
A note on geodesics of projections in the Calkin algebra |
title_fullStr |
A note on geodesics of projections in the Calkin algebra |
title_full_unstemmed |
A note on geodesics of projections in the Calkin algebra |
title_sort |
A note on geodesics of projections in the Calkin algebra |
dc.creator.none.fl_str_mv |
Andruchow, Esteban |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban |
author_role |
author |
dc.subject.none.fl_str_mv |
Calkin algebra Geodesics of projections Projections |
topic |
Calkin algebra Geodesics of projections Projections |
dc.description.none.fl_txt_mv |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. Let C(H) = B(H) / K(H) be the Calkin algebra (B(H) the algebra of bounded operators on the Hilbert space H, K(H) the ideal of compact operators, and π: B(H) → C(H) the quotient map), and PC(H) the differentiable manifold of selfadjoint projections in C(H). A projection p in C(H) can be lifted to a projection P∈ B(H) : π(P) = p. We show that, given p, q∈ PC(H), there exists a minimal geodesic of PC(H) which joins p and q if and only if there exist lifting projections P and Q such that either both N(P- Q± 1) are finite dimensional, or both are infinite dimensional. The minimal geodesic is unique if p+ q- 1 has trivial anhihilator. Here the assertion that a geodesic is minimal means that it is shorter than any other piecewise smooth curve γ(t) ∈ PC(H), t∈ I, joining the same endpoints, where the length of γ is measured by ∫ I‖ γ˙ (t) ‖ dt. |
description |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 2024-12-23T13:21:45Z 2024-12-23T13:21:45Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Andruchow, E. (11-2020). A note on geodesics of projections in the Calkin algebra. Archiv Der Mathematik, 115(5), 545-553. 0003-889X http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1802 |
identifier_str_mv |
Andruchow, E. (11-2020). A note on geodesics of projections in the Calkin algebra. Archiv Der Mathematik, 115(5), 545-553. 0003-889X |
url |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1802 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://dx.doi.org/10.1007/s00013-020-01509-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
dc.source.none.fl_str_mv |
Archiv Der Mathematik. Nov. 2020; 115(5): 545-553 https://link.springer.com/journal/13/volumes-and-issues/115-5 reponame:Repositorio Institucional UNGS instname:Universidad Nacional de General Sarmiento |
reponame_str |
Repositorio Institucional UNGS |
collection |
Repositorio Institucional UNGS |
instname_str |
Universidad Nacional de General Sarmiento |
repository.name.fl_str_mv |
Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento |
repository.mail.fl_str_mv |
ubyd@campus.ungs.edu.ar |
_version_ |
1842346539861671936 |
score |
12.623145 |