Essentially commuting projections

Autores
Andruchow, Esteban; Chiumiento, Eduardo Hernán; Di Iorio y Lucero, M. E.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let H=H+⊕H- be a fixed orthogonal decomposition of a Hilbert space, with both subspaces of infinite dimension, and let E+, E- be the projections onto H+ and H-. We study the set Pcc of orthogonal projections P in H which essentially commute with E+ (or equivalently with E-), i.e.[P,E+]=PE+-E+Pis compact. By means of the projection π onto the Calkin algebra, one sees that these projections P∈Pcc fall into nine classes. Four discrete classes, which correspond to π(P) being 0, 1, π(E+) or π(E-), and five essential classes which we describe below. The discrete classes are, respectively, the finite rank projections, finite co-rank projections, the Sato Grassmannian of H+ and the Sato Grassmannian of H-. Thus the connected components of each of these classes are parametrized by the integers (via de rank, the co-rank or the Fredholm index, respectively). The essential classes are shown to be connected.We are interested in the geometric structure of Pcc, being the set of selfadjoint projections of the C*-algebra Bcc of operators in B(H) which essentially commute with E+. In particular, we study the problem of existence of minimal geodesics joining two given projections in the same component. We show that the Hopf-Rinow Theorem holds in the discrete classes, but not in the essential classes. Conditions for the existence and uniqueness of geodesics in these latter classes are found.
Facultad de Ciencias Exactas
Materia
Matemática
Compact operators
Fredholm index
Geodesics
Projections
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/87080

id SEDICI_5632993339d66fb359a5e9ab3876798a
oai_identifier_str oai:sedici.unlp.edu.ar:10915/87080
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Essentially commuting projectionsAndruchow, EstebanChiumiento, Eduardo HernánDi Iorio y Lucero, M. E.MatemáticaCompact operatorsFredholm indexGeodesicsProjectionsLet H=H+⊕H- be a fixed orthogonal decomposition of a Hilbert space, with both subspaces of infinite dimension, and let E+, E- be the projections onto H+ and H-. We study the set Pcc of orthogonal projections P in H which essentially commute with E+ (or equivalently with E-), i.e.[P,E+]=PE+-E+Pis compact. By means of the projection π onto the Calkin algebra, one sees that these projections P∈Pcc fall into nine classes. Four discrete classes, which correspond to π(P) being 0, 1, π(E+) or π(E-), and five essential classes which we describe below. The discrete classes are, respectively, the finite rank projections, finite co-rank projections, the Sato Grassmannian of H+ and the Sato Grassmannian of H-. Thus the connected components of each of these classes are parametrized by the integers (via de rank, the co-rank or the Fredholm index, respectively). The essential classes are shown to be connected.We are interested in the geometric structure of Pcc, being the set of selfadjoint projections of the C*-algebra Bcc of operators in B(H) which essentially commute with E+. In particular, we study the problem of existence of minimal geodesics joining two given projections in the same component. We show that the Hopf-Rinow Theorem holds in the discrete classes, but not in the essential classes. Conditions for the existence and uniqueness of geodesics in these latter classes are found.Facultad de Ciencias Exactas2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf336-362http://sedici.unlp.edu.ar/handle/10915/87080enginfo:eu-repo/semantics/altIdentifier/issn/0022-1236info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2014.10.003info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:17:00Zoai:sedici.unlp.edu.ar:10915/87080Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:17:00.31SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Essentially commuting projections
title Essentially commuting projections
spellingShingle Essentially commuting projections
Andruchow, Esteban
Matemática
Compact operators
Fredholm index
Geodesics
Projections
title_short Essentially commuting projections
title_full Essentially commuting projections
title_fullStr Essentially commuting projections
title_full_unstemmed Essentially commuting projections
title_sort Essentially commuting projections
dc.creator.none.fl_str_mv Andruchow, Esteban
Chiumiento, Eduardo Hernán
Di Iorio y Lucero, M. E.
author Andruchow, Esteban
author_facet Andruchow, Esteban
Chiumiento, Eduardo Hernán
Di Iorio y Lucero, M. E.
author_role author
author2 Chiumiento, Eduardo Hernán
Di Iorio y Lucero, M. E.
author2_role author
author
dc.subject.none.fl_str_mv Matemática
Compact operators
Fredholm index
Geodesics
Projections
topic Matemática
Compact operators
Fredholm index
Geodesics
Projections
dc.description.none.fl_txt_mv Let H=H+⊕H- be a fixed orthogonal decomposition of a Hilbert space, with both subspaces of infinite dimension, and let E+, E- be the projections onto H+ and H-. We study the set Pcc of orthogonal projections P in H which essentially commute with E+ (or equivalently with E-), i.e.[P,E+]=PE+-E+Pis compact. By means of the projection π onto the Calkin algebra, one sees that these projections P∈Pcc fall into nine classes. Four discrete classes, which correspond to π(P) being 0, 1, π(E+) or π(E-), and five essential classes which we describe below. The discrete classes are, respectively, the finite rank projections, finite co-rank projections, the Sato Grassmannian of H+ and the Sato Grassmannian of H-. Thus the connected components of each of these classes are parametrized by the integers (via de rank, the co-rank or the Fredholm index, respectively). The essential classes are shown to be connected.We are interested in the geometric structure of Pcc, being the set of selfadjoint projections of the C*-algebra Bcc of operators in B(H) which essentially commute with E+. In particular, we study the problem of existence of minimal geodesics joining two given projections in the same component. We show that the Hopf-Rinow Theorem holds in the discrete classes, but not in the essential classes. Conditions for the existence and uniqueness of geodesics in these latter classes are found.
Facultad de Ciencias Exactas
description Let H=H+⊕H- be a fixed orthogonal decomposition of a Hilbert space, with both subspaces of infinite dimension, and let E+, E- be the projections onto H+ and H-. We study the set Pcc of orthogonal projections P in H which essentially commute with E+ (or equivalently with E-), i.e.[P,E+]=PE+-E+Pis compact. By means of the projection π onto the Calkin algebra, one sees that these projections P∈Pcc fall into nine classes. Four discrete classes, which correspond to π(P) being 0, 1, π(E+) or π(E-), and five essential classes which we describe below. The discrete classes are, respectively, the finite rank projections, finite co-rank projections, the Sato Grassmannian of H+ and the Sato Grassmannian of H-. Thus the connected components of each of these classes are parametrized by the integers (via de rank, the co-rank or the Fredholm index, respectively). The essential classes are shown to be connected.We are interested in the geometric structure of Pcc, being the set of selfadjoint projections of the C*-algebra Bcc of operators in B(H) which essentially commute with E+. In particular, we study the problem of existence of minimal geodesics joining two given projections in the same component. We show that the Hopf-Rinow Theorem holds in the discrete classes, but not in the essential classes. Conditions for the existence and uniqueness of geodesics in these latter classes are found.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/87080
url http://sedici.unlp.edu.ar/handle/10915/87080
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0022-1236
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2014.10.003
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
336-362
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616043003117568
score 13.070432