Geodesics of projections in von Neumann algebras
- Autores
- Andruchow, Esteban
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Let A be a von Neumann algebra and PA the manifold of projections in A. There is a natural linear connection in PA, which in the finite dimensional case coincides with the the Levi-Civita connection of the Grassmann manifold of Cn. In this paper we show that two projections p, q can be joined by a geodesic, which has minimal length (with respect to the metric given by the usual norm of A), if and only if p ? q? ? p? ? q, where ? stands for the Murray-von Neumann equivalence of projections. It is shown that the minimal geodesic is unique if and only if p ? q? = p? ? q = 0. If A is a finite factor, any pair of projections in the same connected component of PA (i.e., with the same trace) can be joined by a minimal geodesic. We explore certain relations with Jones’ index theory for subfactors. For instance, it is shown that if N ?M are II1 factors with finite index [M : N ] = t?1, then the geodesic distance d(eN , eM) between the induced projections eN and eM is d(eN , eM) = arccos(t1/2). - Fuente
- Proceedings of the American Mathematical Society. (Jul. 2021); 149(10): 4501-4513
https://www.ams.org/proc/2021-149-10/S0002-9939-2021-15568-8/ - Materia
-
Projections
Geodesics of projections
Von Neumann algebras
Index for subfactors - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de General Sarmiento
- OAI Identificador
- oai:repositorio.ungs.edu.ar:UNGS/1801
Ver los metadatos del registro completo
id |
RIUNGS_b38cf58d1e0a42098a056a0e13a79052 |
---|---|
oai_identifier_str |
oai:repositorio.ungs.edu.ar:UNGS/1801 |
network_acronym_str |
RIUNGS |
repository_id_str |
|
network_name_str |
Repositorio Institucional UNGS |
spelling |
Geodesics of projections in von Neumann algebrasAndruchow, EstebanProjectionsGeodesics of projectionsVon Neumann algebrasIndex for subfactorsFil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Let A be a von Neumann algebra and PA the manifold of projections in A. There is a natural linear connection in PA, which in the finite dimensional case coincides with the the Levi-Civita connection of the Grassmann manifold of Cn. In this paper we show that two projections p, q can be joined by a geodesic, which has minimal length (with respect to the metric given by the usual norm of A), if and only if p ? q? ? p? ? q, where ? stands for the Murray-von Neumann equivalence of projections. It is shown that the minimal geodesic is unique if and only if p ? q? = p? ? q = 0. If A is a finite factor, any pair of projections in the same connected component of PA (i.e., with the same trace) can be joined by a minimal geodesic. We explore certain relations with Jones’ index theory for subfactors. For instance, it is shown that if N ?M are II1 factors with finite index [M : N ] = t?1, then the geodesic distance d(eN , eM) between the induced projections eN and eM is d(eN , eM) = arccos(t1/2).American Mathematical Society2024-12-23T13:21:44Z2024-12-23T13:21:44Z2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfAndruchow, E. (7-2021). Geodesics of projections in von Neumann algebras. Proceedings of the American Mathematical Society, 149(10), 4501-4513.0002-9939http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1801Proceedings of the American Mathematical Society. (Jul. 2021); 149(10): 4501-4513https://www.ams.org/proc/2021-149-10/S0002-9939-2021-15568-8/reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttp://dx.doi.org/10.1090/proc/15568info:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-09-04T11:42:48Zoai:repositorio.ungs.edu.ar:UNGS/1801instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-09-04 11:42:49.554Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse |
dc.title.none.fl_str_mv |
Geodesics of projections in von Neumann algebras |
title |
Geodesics of projections in von Neumann algebras |
spellingShingle |
Geodesics of projections in von Neumann algebras Andruchow, Esteban Projections Geodesics of projections Von Neumann algebras Index for subfactors |
title_short |
Geodesics of projections in von Neumann algebras |
title_full |
Geodesics of projections in von Neumann algebras |
title_fullStr |
Geodesics of projections in von Neumann algebras |
title_full_unstemmed |
Geodesics of projections in von Neumann algebras |
title_sort |
Geodesics of projections in von Neumann algebras |
dc.creator.none.fl_str_mv |
Andruchow, Esteban |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban |
author_role |
author |
dc.subject.none.fl_str_mv |
Projections Geodesics of projections Von Neumann algebras Index for subfactors |
topic |
Projections Geodesics of projections Von Neumann algebras Index for subfactors |
dc.description.none.fl_txt_mv |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. Let A be a von Neumann algebra and PA the manifold of projections in A. There is a natural linear connection in PA, which in the finite dimensional case coincides with the the Levi-Civita connection of the Grassmann manifold of Cn. In this paper we show that two projections p, q can be joined by a geodesic, which has minimal length (with respect to the metric given by the usual norm of A), if and only if p ? q? ? p? ? q, where ? stands for the Murray-von Neumann equivalence of projections. It is shown that the minimal geodesic is unique if and only if p ? q? = p? ? q = 0. If A is a finite factor, any pair of projections in the same connected component of PA (i.e., with the same trace) can be joined by a minimal geodesic. We explore certain relations with Jones’ index theory for subfactors. For instance, it is shown that if N ?M are II1 factors with finite index [M : N ] = t?1, then the geodesic distance d(eN , eM) between the induced projections eN and eM is d(eN , eM) = arccos(t1/2). |
description |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2024-12-23T13:21:44Z 2024-12-23T13:21:44Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Andruchow, E. (7-2021). Geodesics of projections in von Neumann algebras. Proceedings of the American Mathematical Society, 149(10), 4501-4513. 0002-9939 http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1801 |
identifier_str_mv |
Andruchow, E. (7-2021). Geodesics of projections in von Neumann algebras. Proceedings of the American Mathematical Society, 149(10), 4501-4513. 0002-9939 |
url |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1801 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://dx.doi.org/10.1090/proc/15568 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
Proceedings of the American Mathematical Society. (Jul. 2021); 149(10): 4501-4513 https://www.ams.org/proc/2021-149-10/S0002-9939-2021-15568-8/ reponame:Repositorio Institucional UNGS instname:Universidad Nacional de General Sarmiento |
reponame_str |
Repositorio Institucional UNGS |
collection |
Repositorio Institucional UNGS |
instname_str |
Universidad Nacional de General Sarmiento |
repository.name.fl_str_mv |
Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento |
repository.mail.fl_str_mv |
ubyd@campus.ungs.edu.ar |
_version_ |
1842346536256667648 |
score |
12.623145 |