Geodesics of projections in von Neumann algebras

Autores
Andruchow, Esteban
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Let A be a von Neumann algebra and PA the manifold of projections in A. There is a natural linear connection in PA, which in the finite dimensional case coincides with the the Levi-Civita connection of the Grassmann manifold of Cn. In this paper we show that two projections p, q can be joined by a geodesic, which has minimal length (with respect to the metric given by the usual norm of A), if and only if p ? q? ? p? ? q, where ? stands for the Murray-von Neumann equivalence of projections. It is shown that the minimal geodesic is unique if and only if p ? q? = p? ? q = 0. If A is a finite factor, any pair of projections in the same connected component of PA (i.e., with the same trace) can be joined by a minimal geodesic. We explore certain relations with Jones’ index theory for subfactors. For instance, it is shown that if N ?M are II1 factors with finite index [M : N ] = t?1, then the geodesic distance d(eN , eM) between the induced projections eN and eM is d(eN , eM) = arccos(t1/2).
Fuente
Proceedings of the American Mathematical Society. (Jul. 2021); 149(10): 4501-4513
https://www.ams.org/proc/2021-149-10/S0002-9939-2021-15568-8/
Materia
Projections
Geodesics of projections
Von Neumann algebras
Index for subfactors
Nivel de accesibilidad
acceso restringido
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional UNGS
Institución
Universidad Nacional de General Sarmiento
OAI Identificador
oai:repositorio.ungs.edu.ar:UNGS/1801

id RIUNGS_b38cf58d1e0a42098a056a0e13a79052
oai_identifier_str oai:repositorio.ungs.edu.ar:UNGS/1801
network_acronym_str RIUNGS
repository_id_str
network_name_str Repositorio Institucional UNGS
spelling Geodesics of projections in von Neumann algebrasAndruchow, EstebanProjectionsGeodesics of projectionsVon Neumann algebrasIndex for subfactorsFil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Let A be a von Neumann algebra and PA the manifold of projections in A. There is a natural linear connection in PA, which in the finite dimensional case coincides with the the Levi-Civita connection of the Grassmann manifold of Cn. In this paper we show that two projections p, q can be joined by a geodesic, which has minimal length (with respect to the metric given by the usual norm of A), if and only if p ? q? ? p? ? q, where ? stands for the Murray-von Neumann equivalence of projections. It is shown that the minimal geodesic is unique if and only if p ? q? = p? ? q = 0. If A is a finite factor, any pair of projections in the same connected component of PA (i.e., with the same trace) can be joined by a minimal geodesic. We explore certain relations with Jones’ index theory for subfactors. For instance, it is shown that if N ?M are II1 factors with finite index [M : N ] = t?1, then the geodesic distance d(eN , eM) between the induced projections eN and eM is d(eN , eM) = arccos(t1/2).American Mathematical Society2024-12-23T13:21:44Z2024-12-23T13:21:44Z2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfAndruchow, E. (7-2021). Geodesics of projections in von Neumann algebras. Proceedings of the American Mathematical Society, 149(10), 4501-4513.0002-9939http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1801Proceedings of the American Mathematical Society. (Jul. 2021); 149(10): 4501-4513https://www.ams.org/proc/2021-149-10/S0002-9939-2021-15568-8/reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttp://dx.doi.org/10.1090/proc/15568info:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-09-04T11:42:48Zoai:repositorio.ungs.edu.ar:UNGS/1801instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-09-04 11:42:49.554Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse
dc.title.none.fl_str_mv Geodesics of projections in von Neumann algebras
title Geodesics of projections in von Neumann algebras
spellingShingle Geodesics of projections in von Neumann algebras
Andruchow, Esteban
Projections
Geodesics of projections
Von Neumann algebras
Index for subfactors
title_short Geodesics of projections in von Neumann algebras
title_full Geodesics of projections in von Neumann algebras
title_fullStr Geodesics of projections in von Neumann algebras
title_full_unstemmed Geodesics of projections in von Neumann algebras
title_sort Geodesics of projections in von Neumann algebras
dc.creator.none.fl_str_mv Andruchow, Esteban
author Andruchow, Esteban
author_facet Andruchow, Esteban
author_role author
dc.subject.none.fl_str_mv Projections
Geodesics of projections
Von Neumann algebras
Index for subfactors
topic Projections
Geodesics of projections
Von Neumann algebras
Index for subfactors
dc.description.none.fl_txt_mv Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Let A be a von Neumann algebra and PA the manifold of projections in A. There is a natural linear connection in PA, which in the finite dimensional case coincides with the the Levi-Civita connection of the Grassmann manifold of Cn. In this paper we show that two projections p, q can be joined by a geodesic, which has minimal length (with respect to the metric given by the usual norm of A), if and only if p ? q? ? p? ? q, where ? stands for the Murray-von Neumann equivalence of projections. It is shown that the minimal geodesic is unique if and only if p ? q? = p? ? q = 0. If A is a finite factor, any pair of projections in the same connected component of PA (i.e., with the same trace) can be joined by a minimal geodesic. We explore certain relations with Jones’ index theory for subfactors. For instance, it is shown that if N ?M are II1 factors with finite index [M : N ] = t?1, then the geodesic distance d(eN , eM) between the induced projections eN and eM is d(eN , eM) = arccos(t1/2).
description Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
publishDate 2021
dc.date.none.fl_str_mv 2021
2024-12-23T13:21:44Z
2024-12-23T13:21:44Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Andruchow, E. (7-2021). Geodesics of projections in von Neumann algebras. Proceedings of the American Mathematical Society, 149(10), 4501-4513.
0002-9939
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1801
identifier_str_mv Andruchow, E. (7-2021). Geodesics of projections in von Neumann algebras. Proceedings of the American Mathematical Society, 149(10), 4501-4513.
0002-9939
url http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1801
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://dx.doi.org/10.1090/proc/15568
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv Proceedings of the American Mathematical Society. (Jul. 2021); 149(10): 4501-4513
https://www.ams.org/proc/2021-149-10/S0002-9939-2021-15568-8/
reponame:Repositorio Institucional UNGS
instname:Universidad Nacional de General Sarmiento
reponame_str Repositorio Institucional UNGS
collection Repositorio Institucional UNGS
instname_str Universidad Nacional de General Sarmiento
repository.name.fl_str_mv Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento
repository.mail.fl_str_mv ubyd@campus.ungs.edu.ar
_version_ 1842346536256667648
score 12.623145