Schmidt decomposable products of projections
- Autores
- Andruchow, Esteban; Corach, Gustavo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Corach, Gustavo. Universidad Nacional de General Sarmiento; Instituto de Ciencias; Argentina.
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
We characterize operators T = P Q (P, Q orthogonal projections in a Hilbert space H) which have a singular value decomposition. A spatial characterizations is given: this condition occurs if and only if there exist orthonormal bases {ψn} of R(P) and {ξn} of R(Q) such that ξn, ψm = 0 if n = m. Also it is shown that this is equivalent to A = P − Q being diagonalizable. Several examples are studied, relating Toeplitz, Hankel and Wiener–Hopf operators to this condition. We also examine the relationship with the differential geometry of the Grassmann manifold of underlying the Hilbert space: if T = P Q has a singular value decomposition, then the generic parts of P and Q are joined by a minimal geodesic with diagonalizable exponent. - Fuente
- Integral Equations and Operator Theory. Dic. 2017; 89(4): 557-580
- Materia
-
Projections
Products of projections
Differences of projections - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de General Sarmiento
- OAI Identificador
- oai:repositorio.ungs.edu.ar:UNGS/1821
Ver los metadatos del registro completo
id |
RIUNGS_b95f5936c1fcf69315b811d3161683aa |
---|---|
oai_identifier_str |
oai:repositorio.ungs.edu.ar:UNGS/1821 |
network_acronym_str |
RIUNGS |
repository_id_str |
|
network_name_str |
Repositorio Institucional UNGS |
spelling |
Schmidt decomposable products of projectionsAndruchow, EstebanCorach, GustavoProjectionsProducts of projectionsDifferences of projectionsFil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Fil: Corach, Gustavo. Universidad Nacional de General Sarmiento; Instituto de Ciencias; Argentina.Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.We characterize operators T = P Q (P, Q orthogonal projections in a Hilbert space H) which have a singular value decomposition. A spatial characterizations is given: this condition occurs if and only if there exist orthonormal bases {ψn} of R(P) and {ξn} of R(Q) such that ξn, ψm = 0 if n = m. Also it is shown that this is equivalent to A = P − Q being diagonalizable. Several examples are studied, relating Toeplitz, Hankel and Wiener–Hopf operators to this condition. We also examine the relationship with the differential geometry of the Grassmann manifold of underlying the Hilbert space: if T = P Q has a singular value decomposition, then the generic parts of P and Q are joined by a minimal geodesic with diagonalizable exponent.Birkhauser Verlag Ag2024-12-23T14:30:42Z2024-12-23T14:30:42Z2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfCorach, G. y Andruchow, E. (2017). Schmidt Decomposable Products of Projections. Integral Equations and Operator Theory, 89(4), 557-580.0378-620Xhttp://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1821Integral Equations and Operator Theory. Dic. 2017; 89(4): 557-580reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-09-04T11:43:07Zoai:repositorio.ungs.edu.ar:UNGS/1821instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-09-04 11:43:07.468Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse |
dc.title.none.fl_str_mv |
Schmidt decomposable products of projections |
title |
Schmidt decomposable products of projections |
spellingShingle |
Schmidt decomposable products of projections Andruchow, Esteban Projections Products of projections Differences of projections |
title_short |
Schmidt decomposable products of projections |
title_full |
Schmidt decomposable products of projections |
title_fullStr |
Schmidt decomposable products of projections |
title_full_unstemmed |
Schmidt decomposable products of projections |
title_sort |
Schmidt decomposable products of projections |
dc.creator.none.fl_str_mv |
Andruchow, Esteban Corach, Gustavo |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban Corach, Gustavo |
author_role |
author |
author2 |
Corach, Gustavo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Projections Products of projections Differences of projections |
topic |
Projections Products of projections Differences of projections |
dc.description.none.fl_txt_mv |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. Fil: Corach, Gustavo. Universidad Nacional de General Sarmiento; Instituto de Ciencias; Argentina. Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. We characterize operators T = P Q (P, Q orthogonal projections in a Hilbert space H) which have a singular value decomposition. A spatial characterizations is given: this condition occurs if and only if there exist orthonormal bases {ψn} of R(P) and {ξn} of R(Q) such that ξn, ψm = 0 if n = m. Also it is shown that this is equivalent to A = P − Q being diagonalizable. Several examples are studied, relating Toeplitz, Hankel and Wiener–Hopf operators to this condition. We also examine the relationship with the differential geometry of the Grassmann manifold of underlying the Hilbert space: if T = P Q has a singular value decomposition, then the generic parts of P and Q are joined by a minimal geodesic with diagonalizable exponent. |
description |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2024-12-23T14:30:42Z 2024-12-23T14:30:42Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Corach, G. y Andruchow, E. (2017). Schmidt Decomposable Products of Projections. Integral Equations and Operator Theory, 89(4), 557-580. 0378-620X http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1821 |
identifier_str_mv |
Corach, G. y Andruchow, E. (2017). Schmidt Decomposable Products of Projections. Integral Equations and Operator Theory, 89(4), 557-580. 0378-620X |
url |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1821 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
dc.source.none.fl_str_mv |
Integral Equations and Operator Theory. Dic. 2017; 89(4): 557-580 reponame:Repositorio Institucional UNGS instname:Universidad Nacional de General Sarmiento |
reponame_str |
Repositorio Institucional UNGS |
collection |
Repositorio Institucional UNGS |
instname_str |
Universidad Nacional de General Sarmiento |
repository.name.fl_str_mv |
Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento |
repository.mail.fl_str_mv |
ubyd@campus.ungs.edu.ar |
_version_ |
1842346539173806080 |
score |
12.623145 |