Schmidt decomposable products of projections

Autores
Andruchow, Esteban; Corach, Gustavo
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Corach, Gustavo. Universidad Nacional de General Sarmiento; Instituto de Ciencias; Argentina.
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
We characterize operators T = P Q (P, Q orthogonal projections in a Hilbert space H) which have a singular value decomposition. A spatial characterizations is given: this condition occurs if and only if there exist orthonormal bases {ψn} of R(P) and {ξn} of R(Q) such that ξn, ψm = 0 if n = m. Also it is shown that this is equivalent to A = P − Q being diagonalizable. Several examples are studied, relating Toeplitz, Hankel and Wiener–Hopf operators to this condition. We also examine the relationship with the differential geometry of the Grassmann manifold of underlying the Hilbert space: if T = P Q has a singular value decomposition, then the generic parts of P and Q are joined by a minimal geodesic with diagonalizable exponent.
Fuente
Integral Equations and Operator Theory. Dic. 2017; 89(4): 557-580
Materia
Projections
Products of projections
Differences of projections
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional UNGS
Institución
Universidad Nacional de General Sarmiento
OAI Identificador
oai:repositorio.ungs.edu.ar:UNGS/1821

id RIUNGS_b95f5936c1fcf69315b811d3161683aa
oai_identifier_str oai:repositorio.ungs.edu.ar:UNGS/1821
network_acronym_str RIUNGS
repository_id_str
network_name_str Repositorio Institucional UNGS
spelling Schmidt decomposable products of projectionsAndruchow, EstebanCorach, GustavoProjectionsProducts of projectionsDifferences of projectionsFil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Fil: Corach, Gustavo. Universidad Nacional de General Sarmiento; Instituto de Ciencias; Argentina.Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.We characterize operators T = P Q (P, Q orthogonal projections in a Hilbert space H) which have a singular value decomposition. A spatial characterizations is given: this condition occurs if and only if there exist orthonormal bases {ψn} of R(P) and {ξn} of R(Q) such that ξn, ψm = 0 if n = m. Also it is shown that this is equivalent to A = P − Q being diagonalizable. Several examples are studied, relating Toeplitz, Hankel and Wiener–Hopf operators to this condition. We also examine the relationship with the differential geometry of the Grassmann manifold of underlying the Hilbert space: if T = P Q has a singular value decomposition, then the generic parts of P and Q are joined by a minimal geodesic with diagonalizable exponent.Birkhauser Verlag Ag2024-12-23T14:30:42Z2024-12-23T14:30:42Z2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfCorach, G. y Andruchow, E. (2017). Schmidt Decomposable Products of Projections. Integral Equations and Operator Theory, 89(4), 557-580.0378-620Xhttp://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1821Integral Equations and Operator Theory. Dic. 2017; 89(4): 557-580reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-09-04T11:43:07Zoai:repositorio.ungs.edu.ar:UNGS/1821instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-09-04 11:43:07.468Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse
dc.title.none.fl_str_mv Schmidt decomposable products of projections
title Schmidt decomposable products of projections
spellingShingle Schmidt decomposable products of projections
Andruchow, Esteban
Projections
Products of projections
Differences of projections
title_short Schmidt decomposable products of projections
title_full Schmidt decomposable products of projections
title_fullStr Schmidt decomposable products of projections
title_full_unstemmed Schmidt decomposable products of projections
title_sort Schmidt decomposable products of projections
dc.creator.none.fl_str_mv Andruchow, Esteban
Corach, Gustavo
author Andruchow, Esteban
author_facet Andruchow, Esteban
Corach, Gustavo
author_role author
author2 Corach, Gustavo
author2_role author
dc.subject.none.fl_str_mv Projections
Products of projections
Differences of projections
topic Projections
Products of projections
Differences of projections
dc.description.none.fl_txt_mv Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Corach, Gustavo. Universidad Nacional de General Sarmiento; Instituto de Ciencias; Argentina.
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
We characterize operators T = P Q (P, Q orthogonal projections in a Hilbert space H) which have a singular value decomposition. A spatial characterizations is given: this condition occurs if and only if there exist orthonormal bases {ψn} of R(P) and {ξn} of R(Q) such that ξn, ψm = 0 if n = m. Also it is shown that this is equivalent to A = P − Q being diagonalizable. Several examples are studied, relating Toeplitz, Hankel and Wiener–Hopf operators to this condition. We also examine the relationship with the differential geometry of the Grassmann manifold of underlying the Hilbert space: if T = P Q has a singular value decomposition, then the generic parts of P and Q are joined by a minimal geodesic with diagonalizable exponent.
description Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
publishDate 2017
dc.date.none.fl_str_mv 2017
2024-12-23T14:30:42Z
2024-12-23T14:30:42Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Corach, G. y Andruchow, E. (2017). Schmidt Decomposable Products of Projections. Integral Equations and Operator Theory, 89(4), 557-580.
0378-620X
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1821
identifier_str_mv Corach, G. y Andruchow, E. (2017). Schmidt Decomposable Products of Projections. Integral Equations and Operator Theory, 89(4), 557-580.
0378-620X
url http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1821
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Birkhauser Verlag Ag
publisher.none.fl_str_mv Birkhauser Verlag Ag
dc.source.none.fl_str_mv Integral Equations and Operator Theory. Dic. 2017; 89(4): 557-580
reponame:Repositorio Institucional UNGS
instname:Universidad Nacional de General Sarmiento
reponame_str Repositorio Institucional UNGS
collection Repositorio Institucional UNGS
instname_str Universidad Nacional de General Sarmiento
repository.name.fl_str_mv Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento
repository.mail.fl_str_mv ubyd@campus.ungs.edu.ar
_version_ 1842346539173806080
score 12.623145