Essentially commuting projections
- Autores
- Andruchow, Esteban; Chiumiento, Eduardo Hernan; Di Iorio y Lucero, María Eugenia
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let H=H+⊕H- be a fixed orthogonal decomposition of a Hilbert space, with both subspaces of infinite dimension, and let E+, E- be the projections onto H+ and H-. We study the set Pcc of orthogonal projections P in H which essentially commute with E+ (or equivalently with E-), i.e.[P,E+]=PE+-E+Pis compact. By means of the projection π onto the Calkin algebra, one sees that these projections P∈Pcc fall into nine classes. Four discrete classes, which correspond to π(P) being 0, 1, π(E+) or π(E-), and five essential classes which we describe below. The discrete classes are, respectively, the finite rank projections, finite co-rank projections, the Sato Grassmannian of H+ and the Sato Grassmannian of H-. Thus the connected components of each of these classes are parametrized by the integers (via de rank, the co-rank or the Fredholm index, respectively). The essential classes are shown to be connected.We are interested in the geometric structure of Pcc, being the set of selfadjoint projections of the C*-algebra Bcc of operators in B(H) which essentially commute with E+. In particular, we study the problem of existence of minimal geodesics joining two given projections in the same component. We show that the Hopf-Rinow Theorem holds in the discrete classes, but not in the essential classes. Conditions for the existence and uniqueness of geodesics in these latter classes are found.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina. Universidad Nacional de General Sarmiento; Argentina
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina. Universidad Nacional de La Plata. Facultad de Cencias Económicas; Argentina
Fil: Di Iorio y Lucero, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina. Universidad Nacional de General Sarmiento; Argentina - Materia
-
Projections
Compact Operators
Fredholm Index
Geodesics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14948
Ver los metadatos del registro completo
| id |
CONICETDig_53b675c1269b73927ab014cfb630f6f4 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14948 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Essentially commuting projectionsAndruchow, EstebanChiumiento, Eduardo HernanDi Iorio y Lucero, María EugeniaProjectionsCompact OperatorsFredholm IndexGeodesicshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H=H+⊕H- be a fixed orthogonal decomposition of a Hilbert space, with both subspaces of infinite dimension, and let E+, E- be the projections onto H+ and H-. We study the set Pcc of orthogonal projections P in H which essentially commute with E+ (or equivalently with E-), i.e.[P,E+]=PE+-E+Pis compact. By means of the projection π onto the Calkin algebra, one sees that these projections P∈Pcc fall into nine classes. Four discrete classes, which correspond to π(P) being 0, 1, π(E+) or π(E-), and five essential classes which we describe below. The discrete classes are, respectively, the finite rank projections, finite co-rank projections, the Sato Grassmannian of H+ and the Sato Grassmannian of H-. Thus the connected components of each of these classes are parametrized by the integers (via de rank, the co-rank or the Fredholm index, respectively). The essential classes are shown to be connected.We are interested in the geometric structure of Pcc, being the set of selfadjoint projections of the C*-algebra Bcc of operators in B(H) which essentially commute with E+. In particular, we study the problem of existence of minimal geodesics joining two given projections in the same component. We show that the Hopf-Rinow Theorem holds in the discrete classes, but not in the essential classes. Conditions for the existence and uniqueness of geodesics in these latter classes are found.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina. Universidad Nacional de General Sarmiento; ArgentinaFil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina. Universidad Nacional de La Plata. Facultad de Cencias Económicas; ArgentinaFil: Di Iorio y Lucero, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina. Universidad Nacional de General Sarmiento; ArgentinaElsevier2015-01-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14948Andruchow, Esteban; Chiumiento, Eduardo Hernan; Di Iorio y Lucero, María Eugenia; Essentially commuting projections; Elsevier; Journal of Functional Analysis; 268; 2; 15-1-2015; 336-3620022-1236enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123614004169info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2014.10.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:18:14Zoai:ri.conicet.gov.ar:11336/14948instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:18:14.901CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Essentially commuting projections |
| title |
Essentially commuting projections |
| spellingShingle |
Essentially commuting projections Andruchow, Esteban Projections Compact Operators Fredholm Index Geodesics |
| title_short |
Essentially commuting projections |
| title_full |
Essentially commuting projections |
| title_fullStr |
Essentially commuting projections |
| title_full_unstemmed |
Essentially commuting projections |
| title_sort |
Essentially commuting projections |
| dc.creator.none.fl_str_mv |
Andruchow, Esteban Chiumiento, Eduardo Hernan Di Iorio y Lucero, María Eugenia |
| author |
Andruchow, Esteban |
| author_facet |
Andruchow, Esteban Chiumiento, Eduardo Hernan Di Iorio y Lucero, María Eugenia |
| author_role |
author |
| author2 |
Chiumiento, Eduardo Hernan Di Iorio y Lucero, María Eugenia |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Projections Compact Operators Fredholm Index Geodesics |
| topic |
Projections Compact Operators Fredholm Index Geodesics |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let H=H+⊕H- be a fixed orthogonal decomposition of a Hilbert space, with both subspaces of infinite dimension, and let E+, E- be the projections onto H+ and H-. We study the set Pcc of orthogonal projections P in H which essentially commute with E+ (or equivalently with E-), i.e.[P,E+]=PE+-E+Pis compact. By means of the projection π onto the Calkin algebra, one sees that these projections P∈Pcc fall into nine classes. Four discrete classes, which correspond to π(P) being 0, 1, π(E+) or π(E-), and five essential classes which we describe below. The discrete classes are, respectively, the finite rank projections, finite co-rank projections, the Sato Grassmannian of H+ and the Sato Grassmannian of H-. Thus the connected components of each of these classes are parametrized by the integers (via de rank, the co-rank or the Fredholm index, respectively). The essential classes are shown to be connected.We are interested in the geometric structure of Pcc, being the set of selfadjoint projections of the C*-algebra Bcc of operators in B(H) which essentially commute with E+. In particular, we study the problem of existence of minimal geodesics joining two given projections in the same component. We show that the Hopf-Rinow Theorem holds in the discrete classes, but not in the essential classes. Conditions for the existence and uniqueness of geodesics in these latter classes are found. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina. Universidad Nacional de General Sarmiento; Argentina Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina. Universidad Nacional de La Plata. Facultad de Cencias Económicas; Argentina Fil: Di Iorio y Lucero, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina. Universidad Nacional de General Sarmiento; Argentina |
| description |
Let H=H+⊕H- be a fixed orthogonal decomposition of a Hilbert space, with both subspaces of infinite dimension, and let E+, E- be the projections onto H+ and H-. We study the set Pcc of orthogonal projections P in H which essentially commute with E+ (or equivalently with E-), i.e.[P,E+]=PE+-E+Pis compact. By means of the projection π onto the Calkin algebra, one sees that these projections P∈Pcc fall into nine classes. Four discrete classes, which correspond to π(P) being 0, 1, π(E+) or π(E-), and five essential classes which we describe below. The discrete classes are, respectively, the finite rank projections, finite co-rank projections, the Sato Grassmannian of H+ and the Sato Grassmannian of H-. Thus the connected components of each of these classes are parametrized by the integers (via de rank, the co-rank or the Fredholm index, respectively). The essential classes are shown to be connected.We are interested in the geometric structure of Pcc, being the set of selfadjoint projections of the C*-algebra Bcc of operators in B(H) which essentially commute with E+. In particular, we study the problem of existence of minimal geodesics joining two given projections in the same component. We show that the Hopf-Rinow Theorem holds in the discrete classes, but not in the essential classes. Conditions for the existence and uniqueness of geodesics in these latter classes are found. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-01-15 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14948 Andruchow, Esteban; Chiumiento, Eduardo Hernan; Di Iorio y Lucero, María Eugenia; Essentially commuting projections; Elsevier; Journal of Functional Analysis; 268; 2; 15-1-2015; 336-362 0022-1236 |
| url |
http://hdl.handle.net/11336/14948 |
| identifier_str_mv |
Andruchow, Esteban; Chiumiento, Eduardo Hernan; Di Iorio y Lucero, María Eugenia; Essentially commuting projections; Elsevier; Journal of Functional Analysis; 268; 2; 15-1-2015; 336-362 0022-1236 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123614004169 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2014.10.003 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977760877707264 |
| score |
13.087074 |