Domination parameters with number 2 : interrelations and algorithmic consequences

Autores
Bonomo, Flavia; Brešar, Boštjan; Grippo, Luciano Norberto; Milanič, Martin; Safe, Martín D.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Grippo, Luciano Norberto. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil:Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Safe, Martín M. Universidad Nacional del Sur. Departamento de Matemática; Argentina.
Fil: Brešar, Boštjan. University of Maribor. Faculty of Natural Sciences and Mathematics; Slovenia.
Fil: Milanič, Martin. University of Primorska; Eslovenia.
In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 2-domination number, γw2(G), the 2-domination number, γ2(G), the {2}-domination number, γ{2}(G), the double domination number, γ×2(G), the total{2}-domination number, γt{2}(G), and the total double domination number, γ t×2(G), where G is a graph in which the corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γ R(G), and two classical parameters, the domination number, γ (G), and the total domination number, γt(G), we consider 13 domination invariants in graphs. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, a large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain new complexity results regarding the existence of approximation algorithms for the studied invariants, matched with tight or almost tight inapproximability bounds, which hold even in the class of split graphs
Fuente
Discrete Applied Mathematics. (1-2018); 235: 23-50
https://linkinghub.elsevier.com/retrieve/pii/S0166218X17304031
Materia
Graph domination
Total domination
Rainbow domination
2-domination
Integer domination
Double domination
Split graph
Approximation algorithm
Inapproximability
Matemática Aplicada
Matemática Pura
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional UNGS
Institución
Universidad Nacional de General Sarmiento
OAI Identificador
oai:repositorio.ungs.edu.ar:UNGS/1588

id RIUNGS_12f066f5b74260aca8253208dc873225
oai_identifier_str oai:repositorio.ungs.edu.ar:UNGS/1588
network_acronym_str RIUNGS
repository_id_str
network_name_str Repositorio Institucional UNGS
spelling Domination parameters with number 2 : interrelations and algorithmic consequencesBonomo, FlaviaBrešar, BoštjanGrippo, Luciano NorbertoMilanič, MartinSafe, Martín D.Graph dominationTotal dominationRainbow domination2-dominationInteger dominationDouble dominationSplit graphApproximation algorithmInapproximabilityMatemática AplicadaMatemática PuraFil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Grippo, Luciano Norberto. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil:Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Safe, Martín M. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Brešar, Boštjan. University of Maribor. Faculty of Natural Sciences and Mathematics; Slovenia.Fil: Milanič, Martin. University of Primorska; Eslovenia.In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 2-domination number, γw2(G), the 2-domination number, γ2(G), the {2}-domination number, γ{2}(G), the double domination number, γ×2(G), the total{2}-domination number, γt{2}(G), and the total double domination number, γ t×2(G), where G is a graph in which the corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γ R(G), and two classical parameters, the domination number, γ (G), and the total domination number, γt(G), we consider 13 domination invariants in graphs. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, a large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain new complexity results regarding the existence of approximation algorithms for the studied invariants, matched with tight or almost tight inapproximability bounds, which hold even in the class of split graphsElsevier Science BV2024-07-16T17:07:07Z2024-07-16T17:07:07Z2018info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfBonomo, F. et al. (1-2018). Domination parameters with number 2: interrelations and algorithmic consequences. Discrete Applied Mathematics, 235, 23-50.0166-218Xhttp://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1588Discrete Applied Mathematics. (1-2018); 235: 23-50https://linkinghub.elsevier.com/retrieve/pii/S0166218X17304031reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttp://dx.doi.org/10.1016/j.dam.2017.08.017info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-09-29T15:01:49Zoai:repositorio.ungs.edu.ar:UNGS/1588instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-09-29 15:01:49.554Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse
dc.title.none.fl_str_mv Domination parameters with number 2 : interrelations and algorithmic consequences
title Domination parameters with number 2 : interrelations and algorithmic consequences
spellingShingle Domination parameters with number 2 : interrelations and algorithmic consequences
Bonomo, Flavia
Graph domination
Total domination
Rainbow domination
2-domination
Integer domination
Double domination
Split graph
Approximation algorithm
Inapproximability
Matemática Aplicada
Matemática Pura
title_short Domination parameters with number 2 : interrelations and algorithmic consequences
title_full Domination parameters with number 2 : interrelations and algorithmic consequences
title_fullStr Domination parameters with number 2 : interrelations and algorithmic consequences
title_full_unstemmed Domination parameters with number 2 : interrelations and algorithmic consequences
title_sort Domination parameters with number 2 : interrelations and algorithmic consequences
dc.creator.none.fl_str_mv Bonomo, Flavia
Brešar, Boštjan
Grippo, Luciano Norberto
Milanič, Martin
Safe, Martín D.
author Bonomo, Flavia
author_facet Bonomo, Flavia
Brešar, Boštjan
Grippo, Luciano Norberto
Milanič, Martin
Safe, Martín D.
author_role author
author2 Brešar, Boštjan
Grippo, Luciano Norberto
Milanič, Martin
Safe, Martín D.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Graph domination
Total domination
Rainbow domination
2-domination
Integer domination
Double domination
Split graph
Approximation algorithm
Inapproximability
Matemática Aplicada
Matemática Pura
topic Graph domination
Total domination
Rainbow domination
2-domination
Integer domination
Double domination
Split graph
Approximation algorithm
Inapproximability
Matemática Aplicada
Matemática Pura
dc.description.none.fl_txt_mv Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Grippo, Luciano Norberto. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil:Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Safe, Martín M. Universidad Nacional del Sur. Departamento de Matemática; Argentina.
Fil: Brešar, Boštjan. University of Maribor. Faculty of Natural Sciences and Mathematics; Slovenia.
Fil: Milanič, Martin. University of Primorska; Eslovenia.
In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 2-domination number, γw2(G), the 2-domination number, γ2(G), the {2}-domination number, γ{2}(G), the double domination number, γ×2(G), the total{2}-domination number, γt{2}(G), and the total double domination number, γ t×2(G), where G is a graph in which the corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γ R(G), and two classical parameters, the domination number, γ (G), and the total domination number, γt(G), we consider 13 domination invariants in graphs. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, a large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain new complexity results regarding the existence of approximation algorithms for the studied invariants, matched with tight or almost tight inapproximability bounds, which hold even in the class of split graphs
description Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
publishDate 2018
dc.date.none.fl_str_mv 2018
2024-07-16T17:07:07Z
2024-07-16T17:07:07Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Bonomo, F. et al. (1-2018). Domination parameters with number 2: interrelations and algorithmic consequences. Discrete Applied Mathematics, 235, 23-50.
0166-218X
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1588
identifier_str_mv Bonomo, F. et al. (1-2018). Domination parameters with number 2: interrelations and algorithmic consequences. Discrete Applied Mathematics, 235, 23-50.
0166-218X
url http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1588
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://dx.doi.org/10.1016/j.dam.2017.08.017
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Science BV
publisher.none.fl_str_mv Elsevier Science BV
dc.source.none.fl_str_mv Discrete Applied Mathematics. (1-2018); 235: 23-50
https://linkinghub.elsevier.com/retrieve/pii/S0166218X17304031
reponame:Repositorio Institucional UNGS
instname:Universidad Nacional de General Sarmiento
reponame_str Repositorio Institucional UNGS
collection Repositorio Institucional UNGS
instname_str Universidad Nacional de General Sarmiento
repository.name.fl_str_mv Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento
repository.mail.fl_str_mv ubyd@campus.ungs.edu.ar
_version_ 1844623308177276928
score 12.559606