New algorithms for weighted k-domination and total k-domination problems in proper interval graphs

Autores
Chiarelli, Nina; Hartinger, Tatiana Romina; Leoni, Valeria Alejandra; Lopez Pujato, María Inés; Milanič, Martin
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given a positive integer k, a k-dominating set in a graph G is a set of vertices such that every vertex not in the set has at least k neighbors in the set. A total k-dominating set is a set of vertices such that every vertex of the graph has at least k neighbors in the set. The problems of finding the minimum size of a k-dominating, respectively total k-dominating set, in a given graph, are referred to as k-domination, respectively total k-domination. These generalizations of the classical domination and total domination problems are known to be NP-hard in the class of chordal graphs, and, more specifically, even in the classes of split graphs (both problems) and undirected path graphs (in the case of total k-domination). On the other hand, it follows from previous works by Bui-Xuan et al. (2013) [8] and by Belmonte and Vatshelle (2013) [3] that these two families of problems are solvable in time O(|V(G)|3k+4) in the class of interval graphs. We develop faster algorithms for k-domination and total k-domination in the class of proper interval graphs, by means of reduction to a single shortest path computation in a derived directed acyclic graph with O(|V(G)|2k) nodes and O(|V(G)|4k) arcs. We show that a suitable implementation, which avoids constructing all arcs of the digraph, leads to a running time of O(|V(G)|3k). The algorithms are also applicable to the weighted case.
Fil: Chiarelli, Nina. Univerza Na Primorskem. Faculty of Mathematics, Natural Sciences and Information Technologies; Eslovenia
Fil: Hartinger, Tatiana Romina. Cognitiva Etermax Labs; Estados Unidos
Fil: Leoni, Valeria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Lopez Pujato, María Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Ministerio de Ciencia. Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica; Argentina
Fil: Milanič, Martin. Univerza Na Primorskem. Faculty of Mathematics, Natural Sciences and Information Technologies; Eslovenia
Materia
K-DOMINATION
POLYNOMIAL-TIME ALGORITHM
PROPER INTERVAL GRAPH
TOTAL K-DOMINATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/127689

id CONICETDig_bd435bd8ac8ec3db8efb5189e9fe04c1
oai_identifier_str oai:ri.conicet.gov.ar:11336/127689
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling New algorithms for weighted k-domination and total k-domination problems in proper interval graphsChiarelli, NinaHartinger, Tatiana RominaLeoni, Valeria AlejandraLopez Pujato, María InésMilanič, MartinK-DOMINATIONPOLYNOMIAL-TIME ALGORITHMPROPER INTERVAL GRAPHTOTAL K-DOMINATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a positive integer k, a k-dominating set in a graph G is a set of vertices such that every vertex not in the set has at least k neighbors in the set. A total k-dominating set is a set of vertices such that every vertex of the graph has at least k neighbors in the set. The problems of finding the minimum size of a k-dominating, respectively total k-dominating set, in a given graph, are referred to as k-domination, respectively total k-domination. These generalizations of the classical domination and total domination problems are known to be NP-hard in the class of chordal graphs, and, more specifically, even in the classes of split graphs (both problems) and undirected path graphs (in the case of total k-domination). On the other hand, it follows from previous works by Bui-Xuan et al. (2013) [8] and by Belmonte and Vatshelle (2013) [3] that these two families of problems are solvable in time O(|V(G)|3k+4) in the class of interval graphs. We develop faster algorithms for k-domination and total k-domination in the class of proper interval graphs, by means of reduction to a single shortest path computation in a derived directed acyclic graph with O(|V(G)|2k) nodes and O(|V(G)|4k) arcs. We show that a suitable implementation, which avoids constructing all arcs of the digraph, leads to a running time of O(|V(G)|3k). The algorithms are also applicable to the weighted case.Fil: Chiarelli, Nina. Univerza Na Primorskem. Faculty of Mathematics, Natural Sciences and Information Technologies; EsloveniaFil: Hartinger, Tatiana Romina. Cognitiva Etermax Labs; Estados UnidosFil: Leoni, Valeria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Lopez Pujato, María Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Ministerio de Ciencia. Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica; ArgentinaFil: Milanič, Martin. Univerza Na Primorskem. Faculty of Mathematics, Natural Sciences and Information Technologies; EsloveniaElsevier Science2019-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/127689Chiarelli, Nina; Hartinger, Tatiana Romina; Leoni, Valeria Alejandra; Lopez Pujato, María Inés; Milanič, Martin; New algorithms for weighted k-domination and total k-domination problems in proper interval graphs; Elsevier Science; Theoretical Computer Science; 795; 11-2019; 128-1410304-3975CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0304397519303937info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2019.06.007info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1803.04327info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:24:19Zoai:ri.conicet.gov.ar:11336/127689instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:24:19.296CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv New algorithms for weighted k-domination and total k-domination problems in proper interval graphs
title New algorithms for weighted k-domination and total k-domination problems in proper interval graphs
spellingShingle New algorithms for weighted k-domination and total k-domination problems in proper interval graphs
Chiarelli, Nina
K-DOMINATION
POLYNOMIAL-TIME ALGORITHM
PROPER INTERVAL GRAPH
TOTAL K-DOMINATION
title_short New algorithms for weighted k-domination and total k-domination problems in proper interval graphs
title_full New algorithms for weighted k-domination and total k-domination problems in proper interval graphs
title_fullStr New algorithms for weighted k-domination and total k-domination problems in proper interval graphs
title_full_unstemmed New algorithms for weighted k-domination and total k-domination problems in proper interval graphs
title_sort New algorithms for weighted k-domination and total k-domination problems in proper interval graphs
dc.creator.none.fl_str_mv Chiarelli, Nina
Hartinger, Tatiana Romina
Leoni, Valeria Alejandra
Lopez Pujato, María Inés
Milanič, Martin
author Chiarelli, Nina
author_facet Chiarelli, Nina
Hartinger, Tatiana Romina
Leoni, Valeria Alejandra
Lopez Pujato, María Inés
Milanič, Martin
author_role author
author2 Hartinger, Tatiana Romina
Leoni, Valeria Alejandra
Lopez Pujato, María Inés
Milanič, Martin
author2_role author
author
author
author
dc.subject.none.fl_str_mv K-DOMINATION
POLYNOMIAL-TIME ALGORITHM
PROPER INTERVAL GRAPH
TOTAL K-DOMINATION
topic K-DOMINATION
POLYNOMIAL-TIME ALGORITHM
PROPER INTERVAL GRAPH
TOTAL K-DOMINATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given a positive integer k, a k-dominating set in a graph G is a set of vertices such that every vertex not in the set has at least k neighbors in the set. A total k-dominating set is a set of vertices such that every vertex of the graph has at least k neighbors in the set. The problems of finding the minimum size of a k-dominating, respectively total k-dominating set, in a given graph, are referred to as k-domination, respectively total k-domination. These generalizations of the classical domination and total domination problems are known to be NP-hard in the class of chordal graphs, and, more specifically, even in the classes of split graphs (both problems) and undirected path graphs (in the case of total k-domination). On the other hand, it follows from previous works by Bui-Xuan et al. (2013) [8] and by Belmonte and Vatshelle (2013) [3] that these two families of problems are solvable in time O(|V(G)|3k+4) in the class of interval graphs. We develop faster algorithms for k-domination and total k-domination in the class of proper interval graphs, by means of reduction to a single shortest path computation in a derived directed acyclic graph with O(|V(G)|2k) nodes and O(|V(G)|4k) arcs. We show that a suitable implementation, which avoids constructing all arcs of the digraph, leads to a running time of O(|V(G)|3k). The algorithms are also applicable to the weighted case.
Fil: Chiarelli, Nina. Univerza Na Primorskem. Faculty of Mathematics, Natural Sciences and Information Technologies; Eslovenia
Fil: Hartinger, Tatiana Romina. Cognitiva Etermax Labs; Estados Unidos
Fil: Leoni, Valeria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Lopez Pujato, María Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Ministerio de Ciencia. Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica; Argentina
Fil: Milanič, Martin. Univerza Na Primorskem. Faculty of Mathematics, Natural Sciences and Information Technologies; Eslovenia
description Given a positive integer k, a k-dominating set in a graph G is a set of vertices such that every vertex not in the set has at least k neighbors in the set. A total k-dominating set is a set of vertices such that every vertex of the graph has at least k neighbors in the set. The problems of finding the minimum size of a k-dominating, respectively total k-dominating set, in a given graph, are referred to as k-domination, respectively total k-domination. These generalizations of the classical domination and total domination problems are known to be NP-hard in the class of chordal graphs, and, more specifically, even in the classes of split graphs (both problems) and undirected path graphs (in the case of total k-domination). On the other hand, it follows from previous works by Bui-Xuan et al. (2013) [8] and by Belmonte and Vatshelle (2013) [3] that these two families of problems are solvable in time O(|V(G)|3k+4) in the class of interval graphs. We develop faster algorithms for k-domination and total k-domination in the class of proper interval graphs, by means of reduction to a single shortest path computation in a derived directed acyclic graph with O(|V(G)|2k) nodes and O(|V(G)|4k) arcs. We show that a suitable implementation, which avoids constructing all arcs of the digraph, leads to a running time of O(|V(G)|3k). The algorithms are also applicable to the weighted case.
publishDate 2019
dc.date.none.fl_str_mv 2019-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/127689
Chiarelli, Nina; Hartinger, Tatiana Romina; Leoni, Valeria Alejandra; Lopez Pujato, María Inés; Milanič, Martin; New algorithms for weighted k-domination and total k-domination problems in proper interval graphs; Elsevier Science; Theoretical Computer Science; 795; 11-2019; 128-141
0304-3975
CONICET Digital
CONICET
url http://hdl.handle.net/11336/127689
identifier_str_mv Chiarelli, Nina; Hartinger, Tatiana Romina; Leoni, Valeria Alejandra; Lopez Pujato, María Inés; Milanič, Martin; New algorithms for weighted k-domination and total k-domination problems in proper interval graphs; Elsevier Science; Theoretical Computer Science; 795; 11-2019; 128-141
0304-3975
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0304397519303937
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2019.06.007
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1803.04327
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614239655821312
score 13.070432