k-Domination ivariants on Kneser graphs
- Autores
- Brešar, Boštjan; Dravec, Tanja; Cornet, María Gracia; Henning, Michael A.
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this follow-up to work of M.G. Cornet and P. Torres from 2023, where the k-tuple domination number and the 2-packing number in Kneser graphs K(n, r) were studied, we are concerned with two variations, the k-domination number, γk(K(n, r)), and the k-tuple total domination number, γt × k(K(n, r)), of K(n, r). For both invariants we prove monotonicity results by showing that γk(K(n, r)) ≥ γk(K(n + 1, r)) holds for any n ≥ 2(k + r), and γt × k(K(n, r)) ≥ γt × k(K(n + 1, r)) holds for any n ≥ 2r + 1. We prove that γk(K(n, r)) = γt × k(K(n, r)) = k + r when n ≥ r(k + r), and that in this case every γ_(k)-set and γ_(t × k)-set is a clique, while γk(r(k + r) − 1, r) = γt × k(r(k + r) − 1, r) = k + r + 1, for any k ≥ 2. Concerning the 2-packing number, ρ₂(K(n, r)), of K(n, r), we prove the exact values of ρ₂(K(3r − 3, r)) when r ≥ 10, and give sufficient conditions for ρ₂(K(n, r)) to be equal to some small values by imposing bounds on r with respect to n. We also prove a version of monotonicity for the 2-packing number of Kneser graphs.
Fil: Brešar, Boštjan. University Of Maribor; Eslovenia
Fil: Dravec, Tanja. University Of Maribor; Eslovenia
Fil: Cornet, María Gracia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Henning, Michael A.. University Of Johannesburg; Sudáfrica - Materia
-
Kneser graphs
K-domination
K-tuple total domination
2-packing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/274441
Ver los metadatos del registro completo
| id |
CONICETDig_cc0edc2f99565594aaf9bdb011f9525f |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/274441 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
k-Domination ivariants on Kneser graphsBrešar, BoštjanDravec, TanjaCornet, María GraciaHenning, Michael A.Kneser graphsK-dominationK-tuple total domination2-packinghttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this follow-up to work of M.G. Cornet and P. Torres from 2023, where the k-tuple domination number and the 2-packing number in Kneser graphs K(n, r) were studied, we are concerned with two variations, the k-domination number, γk(K(n, r)), and the k-tuple total domination number, γt × k(K(n, r)), of K(n, r). For both invariants we prove monotonicity results by showing that γk(K(n, r)) ≥ γk(K(n + 1, r)) holds for any n ≥ 2(k + r), and γt × k(K(n, r)) ≥ γt × k(K(n + 1, r)) holds for any n ≥ 2r + 1. We prove that γk(K(n, r)) = γt × k(K(n, r)) = k + r when n ≥ r(k + r), and that in this case every γ_(k)-set and γ_(t × k)-set is a clique, while γk(r(k + r) − 1, r) = γt × k(r(k + r) − 1, r) = k + r + 1, for any k ≥ 2. Concerning the 2-packing number, ρ₂(K(n, r)), of K(n, r), we prove the exact values of ρ₂(K(3r − 3, r)) when r ≥ 10, and give sufficient conditions for ρ₂(K(n, r)) to be equal to some small values by imposing bounds on r with respect to n. We also prove a version of monotonicity for the 2-packing number of Kneser graphs.Fil: Brešar, Boštjan. University Of Maribor; EsloveniaFil: Dravec, Tanja. University Of Maribor; EsloveniaFil: Cornet, María Gracia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Henning, Michael A.. University Of Johannesburg; SudáfricaUniversity of Primorska Press2025-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/274441Brešar, Boštjan; Dravec, Tanja; Cornet, María Gracia; Henning, Michael A.; k-Domination ivariants on Kneser graphs; University of Primorska Press; Ars Mathematica Contemporanea; 25; 4; 7-2025; 1-161855-39661855-3974CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://amc-journal.eu/index.php/amc/article/view/3294info:eu-repo/semantics/altIdentifier/doi/10.26493/1855-3974.3294.7fdinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:39:08Zoai:ri.conicet.gov.ar:11336/274441instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:39:09.147CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
k-Domination ivariants on Kneser graphs |
| title |
k-Domination ivariants on Kneser graphs |
| spellingShingle |
k-Domination ivariants on Kneser graphs Brešar, Boštjan Kneser graphs K-domination K-tuple total domination 2-packing |
| title_short |
k-Domination ivariants on Kneser graphs |
| title_full |
k-Domination ivariants on Kneser graphs |
| title_fullStr |
k-Domination ivariants on Kneser graphs |
| title_full_unstemmed |
k-Domination ivariants on Kneser graphs |
| title_sort |
k-Domination ivariants on Kneser graphs |
| dc.creator.none.fl_str_mv |
Brešar, Boštjan Dravec, Tanja Cornet, María Gracia Henning, Michael A. |
| author |
Brešar, Boštjan |
| author_facet |
Brešar, Boštjan Dravec, Tanja Cornet, María Gracia Henning, Michael A. |
| author_role |
author |
| author2 |
Dravec, Tanja Cornet, María Gracia Henning, Michael A. |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Kneser graphs K-domination K-tuple total domination 2-packing |
| topic |
Kneser graphs K-domination K-tuple total domination 2-packing |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this follow-up to work of M.G. Cornet and P. Torres from 2023, where the k-tuple domination number and the 2-packing number in Kneser graphs K(n, r) were studied, we are concerned with two variations, the k-domination number, γk(K(n, r)), and the k-tuple total domination number, γt × k(K(n, r)), of K(n, r). For both invariants we prove monotonicity results by showing that γk(K(n, r)) ≥ γk(K(n + 1, r)) holds for any n ≥ 2(k + r), and γt × k(K(n, r)) ≥ γt × k(K(n + 1, r)) holds for any n ≥ 2r + 1. We prove that γk(K(n, r)) = γt × k(K(n, r)) = k + r when n ≥ r(k + r), and that in this case every γ_(k)-set and γ_(t × k)-set is a clique, while γk(r(k + r) − 1, r) = γt × k(r(k + r) − 1, r) = k + r + 1, for any k ≥ 2. Concerning the 2-packing number, ρ₂(K(n, r)), of K(n, r), we prove the exact values of ρ₂(K(3r − 3, r)) when r ≥ 10, and give sufficient conditions for ρ₂(K(n, r)) to be equal to some small values by imposing bounds on r with respect to n. We also prove a version of monotonicity for the 2-packing number of Kneser graphs. Fil: Brešar, Boštjan. University Of Maribor; Eslovenia Fil: Dravec, Tanja. University Of Maribor; Eslovenia Fil: Cornet, María Gracia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Henning, Michael A.. University Of Johannesburg; Sudáfrica |
| description |
In this follow-up to work of M.G. Cornet and P. Torres from 2023, where the k-tuple domination number and the 2-packing number in Kneser graphs K(n, r) were studied, we are concerned with two variations, the k-domination number, γk(K(n, r)), and the k-tuple total domination number, γt × k(K(n, r)), of K(n, r). For both invariants we prove monotonicity results by showing that γk(K(n, r)) ≥ γk(K(n + 1, r)) holds for any n ≥ 2(k + r), and γt × k(K(n, r)) ≥ γt × k(K(n + 1, r)) holds for any n ≥ 2r + 1. We prove that γk(K(n, r)) = γt × k(K(n, r)) = k + r when n ≥ r(k + r), and that in this case every γ_(k)-set and γ_(t × k)-set is a clique, while γk(r(k + r) − 1, r) = γt × k(r(k + r) − 1, r) = k + r + 1, for any k ≥ 2. Concerning the 2-packing number, ρ₂(K(n, r)), of K(n, r), we prove the exact values of ρ₂(K(3r − 3, r)) when r ≥ 10, and give sufficient conditions for ρ₂(K(n, r)) to be equal to some small values by imposing bounds on r with respect to n. We also prove a version of monotonicity for the 2-packing number of Kneser graphs. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/274441 Brešar, Boštjan; Dravec, Tanja; Cornet, María Gracia; Henning, Michael A.; k-Domination ivariants on Kneser graphs; University of Primorska Press; Ars Mathematica Contemporanea; 25; 4; 7-2025; 1-16 1855-3966 1855-3974 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/274441 |
| identifier_str_mv |
Brešar, Boštjan; Dravec, Tanja; Cornet, María Gracia; Henning, Michael A.; k-Domination ivariants on Kneser graphs; University of Primorska Press; Ars Mathematica Contemporanea; 25; 4; 7-2025; 1-16 1855-3966 1855-3974 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://amc-journal.eu/index.php/amc/article/view/3294 info:eu-repo/semantics/altIdentifier/doi/10.26493/1855-3974.3294.7fd |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
University of Primorska Press |
| publisher.none.fl_str_mv |
University of Primorska Press |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847976903438237696 |
| score |
13.121305 |