k-Domination ivariants on Kneser graphs

Autores
Brešar, Boštjan; Dravec, Tanja; Cornet, María Gracia; Henning, Michael A.
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this follow-up to work of M.G. Cornet and P. Torres from 2023, where the k-tuple domination number and the 2-packing number in Kneser graphs K(n, r) were studied, we are concerned with two variations, the k-domination number, γk(K(n, r)), and the k-tuple total domination number, γt × k(K(n, r)), of K(n, r). For both invariants we prove monotonicity results by showing that γk(K(n, r)) ≥ γk(K(n + 1, r)) holds for any n ≥ 2(k + r), and γt × k(K(n, r)) ≥ γt × k(K(n + 1, r)) holds for any n ≥ 2r + 1. We prove that γk(K(n, r)) = γt × k(K(n, r)) = k + r when n ≥ r(k + r), and that in this case every γ_(k)-set and γ_(t × k)-set is a clique, while γk(r(k + r) − 1, r) = γt × k(r(k + r) − 1, r) = k + r + 1, for any k ≥ 2. Concerning the 2-packing number, ρ₂(K(n, r)), of K(n, r), we prove the exact values of ρ₂(K(3r − 3, r)) when r ≥ 10, and give sufficient conditions for ρ₂(K(n, r)) to be equal to some small values by imposing bounds on r with respect to n. We also prove a version of monotonicity for the 2-packing number of Kneser graphs.
Fil: Brešar, Boštjan. University Of Maribor; Eslovenia
Fil: Dravec, Tanja. University Of Maribor; Eslovenia
Fil: Cornet, María Gracia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Henning, Michael A.. University Of Johannesburg; Sudáfrica
Materia
Kneser graphs
K-domination
K-tuple total domination
2-packing
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/274441

id CONICETDig_cc0edc2f99565594aaf9bdb011f9525f
oai_identifier_str oai:ri.conicet.gov.ar:11336/274441
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling k-Domination ivariants on Kneser graphsBrešar, BoštjanDravec, TanjaCornet, María GraciaHenning, Michael A.Kneser graphsK-dominationK-tuple total domination2-packinghttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this follow-up to work of M.G. Cornet and P. Torres from 2023, where the k-tuple domination number and the 2-packing number in Kneser graphs K(n, r) were studied, we are concerned with two variations, the k-domination number, γk(K(n, r)), and the k-tuple total domination number, γt × k(K(n, r)), of K(n, r). For both invariants we prove monotonicity results by showing that γk(K(n, r)) ≥ γk(K(n + 1, r)) holds for any n ≥ 2(k + r), and γt × k(K(n, r)) ≥ γt × k(K(n + 1, r)) holds for any n ≥ 2r + 1. We prove that γk(K(n, r)) = γt × k(K(n, r)) = k + r when n ≥ r(k + r), and that in this case every γ_(k)-set and γ_(t × k)-set is a clique, while γk(r(k + r) − 1, r) = γt × k(r(k + r) − 1, r) = k + r + 1, for any k ≥ 2. Concerning the 2-packing number, ρ₂(K(n, r)), of K(n, r), we prove the exact values of ρ₂(K(3r − 3, r)) when r ≥ 10, and give sufficient conditions for ρ₂(K(n, r)) to be equal to some small values by imposing bounds on r with respect to n. We also prove a version of monotonicity for the 2-packing number of Kneser graphs.Fil: Brešar, Boštjan. University Of Maribor; EsloveniaFil: Dravec, Tanja. University Of Maribor; EsloveniaFil: Cornet, María Gracia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Henning, Michael A.. University Of Johannesburg; SudáfricaUniversity of Primorska Press2025-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/274441Brešar, Boštjan; Dravec, Tanja; Cornet, María Gracia; Henning, Michael A.; k-Domination ivariants on Kneser graphs; University of Primorska Press; Ars Mathematica Contemporanea; 25; 4; 7-2025; 1-161855-39661855-3974CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://amc-journal.eu/index.php/amc/article/view/3294info:eu-repo/semantics/altIdentifier/doi/10.26493/1855-3974.3294.7fdinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:39:08Zoai:ri.conicet.gov.ar:11336/274441instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:39:09.147CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv k-Domination ivariants on Kneser graphs
title k-Domination ivariants on Kneser graphs
spellingShingle k-Domination ivariants on Kneser graphs
Brešar, Boštjan
Kneser graphs
K-domination
K-tuple total domination
2-packing
title_short k-Domination ivariants on Kneser graphs
title_full k-Domination ivariants on Kneser graphs
title_fullStr k-Domination ivariants on Kneser graphs
title_full_unstemmed k-Domination ivariants on Kneser graphs
title_sort k-Domination ivariants on Kneser graphs
dc.creator.none.fl_str_mv Brešar, Boštjan
Dravec, Tanja
Cornet, María Gracia
Henning, Michael A.
author Brešar, Boštjan
author_facet Brešar, Boštjan
Dravec, Tanja
Cornet, María Gracia
Henning, Michael A.
author_role author
author2 Dravec, Tanja
Cornet, María Gracia
Henning, Michael A.
author2_role author
author
author
dc.subject.none.fl_str_mv Kneser graphs
K-domination
K-tuple total domination
2-packing
topic Kneser graphs
K-domination
K-tuple total domination
2-packing
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this follow-up to work of M.G. Cornet and P. Torres from 2023, where the k-tuple domination number and the 2-packing number in Kneser graphs K(n, r) were studied, we are concerned with two variations, the k-domination number, γk(K(n, r)), and the k-tuple total domination number, γt × k(K(n, r)), of K(n, r). For both invariants we prove monotonicity results by showing that γk(K(n, r)) ≥ γk(K(n + 1, r)) holds for any n ≥ 2(k + r), and γt × k(K(n, r)) ≥ γt × k(K(n + 1, r)) holds for any n ≥ 2r + 1. We prove that γk(K(n, r)) = γt × k(K(n, r)) = k + r when n ≥ r(k + r), and that in this case every γ_(k)-set and γ_(t × k)-set is a clique, while γk(r(k + r) − 1, r) = γt × k(r(k + r) − 1, r) = k + r + 1, for any k ≥ 2. Concerning the 2-packing number, ρ₂(K(n, r)), of K(n, r), we prove the exact values of ρ₂(K(3r − 3, r)) when r ≥ 10, and give sufficient conditions for ρ₂(K(n, r)) to be equal to some small values by imposing bounds on r with respect to n. We also prove a version of monotonicity for the 2-packing number of Kneser graphs.
Fil: Brešar, Boštjan. University Of Maribor; Eslovenia
Fil: Dravec, Tanja. University Of Maribor; Eslovenia
Fil: Cornet, María Gracia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Henning, Michael A.. University Of Johannesburg; Sudáfrica
description In this follow-up to work of M.G. Cornet and P. Torres from 2023, where the k-tuple domination number and the 2-packing number in Kneser graphs K(n, r) were studied, we are concerned with two variations, the k-domination number, γk(K(n, r)), and the k-tuple total domination number, γt × k(K(n, r)), of K(n, r). For both invariants we prove monotonicity results by showing that γk(K(n, r)) ≥ γk(K(n + 1, r)) holds for any n ≥ 2(k + r), and γt × k(K(n, r)) ≥ γt × k(K(n + 1, r)) holds for any n ≥ 2r + 1. We prove that γk(K(n, r)) = γt × k(K(n, r)) = k + r when n ≥ r(k + r), and that in this case every γ_(k)-set and γ_(t × k)-set is a clique, while γk(r(k + r) − 1, r) = γt × k(r(k + r) − 1, r) = k + r + 1, for any k ≥ 2. Concerning the 2-packing number, ρ₂(K(n, r)), of K(n, r), we prove the exact values of ρ₂(K(3r − 3, r)) when r ≥ 10, and give sufficient conditions for ρ₂(K(n, r)) to be equal to some small values by imposing bounds on r with respect to n. We also prove a version of monotonicity for the 2-packing number of Kneser graphs.
publishDate 2025
dc.date.none.fl_str_mv 2025-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/274441
Brešar, Boštjan; Dravec, Tanja; Cornet, María Gracia; Henning, Michael A.; k-Domination ivariants on Kneser graphs; University of Primorska Press; Ars Mathematica Contemporanea; 25; 4; 7-2025; 1-16
1855-3966
1855-3974
CONICET Digital
CONICET
url http://hdl.handle.net/11336/274441
identifier_str_mv Brešar, Boštjan; Dravec, Tanja; Cornet, María Gracia; Henning, Michael A.; k-Domination ivariants on Kneser graphs; University of Primorska Press; Ars Mathematica Contemporanea; 25; 4; 7-2025; 1-16
1855-3966
1855-3974
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://amc-journal.eu/index.php/amc/article/view/3294
info:eu-repo/semantics/altIdentifier/doi/10.26493/1855-3974.3294.7fd
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv University of Primorska Press
publisher.none.fl_str_mv University of Primorska Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847976903438237696
score 13.121305