Domination parameters with number 2: Interrelations and algorithmic consequences
- Autores
- Bonomo, Flavia; Brešar, Boštjan; Grippo, Luciano Norberto; Milanič, Martin; Safe, Martin Dario
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 2-domination number, γw2(G), the 2-domination number, γ2(G), the {2}-domination number, γ{2}(G), the double domination number, γ×2(G), the total {2}-domination number, γt{2}(G), and the total double domination number, γt×2(G), where G is a graph in which the corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G), and two classical parameters, the domination number, γ(G), and the total domination number, γt(G), we consider 13 domination invariants in graphs. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, a large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain new complexity results regarding the existence of approximation algorithms for the studied invariants, matched with tight or almost tight inapproximability bounds, which hold even in the class of split graphs.
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Brešar, Boštjan. Institute of Mathematics, Physics and Mechanics; Eslovenia. University of Maribor; Eslovenia
Fil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Milanič, Martin. University of Primorska; Eslovenia
Fil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina - Materia
-
2-DOMINATION
APPROXIMATION ALGORITHM
DOUBLE DOMINATION
GRAPH DOMINATION
INAPPROXIMABILITY
INTEGER DOMINATION
RAINBOW DOMINATION
SPLIT GRAPH
TOTAL DOMINATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/97057
Ver los metadatos del registro completo
id |
CONICETDig_4ab132bf9e6c7f35445275dce7311845 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/97057 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Domination parameters with number 2: Interrelations and algorithmic consequencesBonomo, FlaviaBrešar, BoštjanGrippo, Luciano NorbertoMilanič, MartinSafe, Martin Dario2-DOMINATIONAPPROXIMATION ALGORITHMDOUBLE DOMINATIONGRAPH DOMINATIONINAPPROXIMABILITYINTEGER DOMINATIONRAINBOW DOMINATIONSPLIT GRAPHTOTAL DOMINATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 2-domination number, γw2(G), the 2-domination number, γ2(G), the {2}-domination number, γ{2}(G), the double domination number, γ×2(G), the total {2}-domination number, γt{2}(G), and the total double domination number, γt×2(G), where G is a graph in which the corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G), and two classical parameters, the domination number, γ(G), and the total domination number, γt(G), we consider 13 domination invariants in graphs. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, a large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain new complexity results regarding the existence of approximation algorithms for the studied invariants, matched with tight or almost tight inapproximability bounds, which hold even in the class of split graphs.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Brešar, Boštjan. Institute of Mathematics, Physics and Mechanics; Eslovenia. University of Maribor; EsloveniaFil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Milanič, Martin. University of Primorska; EsloveniaFil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaElsevier Science2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97057Bonomo, Flavia; Brešar, Boštjan; Grippo, Luciano Norberto; Milanič, Martin; Safe, Martin Dario; Domination parameters with number 2: Interrelations and algorithmic consequences; Elsevier Science; Discrete Applied Mathematics; 235; 1-2018; 23-500166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X17304031info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2017.08.017info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1511.00410info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:08Zoai:ri.conicet.gov.ar:11336/97057instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:09.138CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Domination parameters with number 2: Interrelations and algorithmic consequences |
title |
Domination parameters with number 2: Interrelations and algorithmic consequences |
spellingShingle |
Domination parameters with number 2: Interrelations and algorithmic consequences Bonomo, Flavia 2-DOMINATION APPROXIMATION ALGORITHM DOUBLE DOMINATION GRAPH DOMINATION INAPPROXIMABILITY INTEGER DOMINATION RAINBOW DOMINATION SPLIT GRAPH TOTAL DOMINATION |
title_short |
Domination parameters with number 2: Interrelations and algorithmic consequences |
title_full |
Domination parameters with number 2: Interrelations and algorithmic consequences |
title_fullStr |
Domination parameters with number 2: Interrelations and algorithmic consequences |
title_full_unstemmed |
Domination parameters with number 2: Interrelations and algorithmic consequences |
title_sort |
Domination parameters with number 2: Interrelations and algorithmic consequences |
dc.creator.none.fl_str_mv |
Bonomo, Flavia Brešar, Boštjan Grippo, Luciano Norberto Milanič, Martin Safe, Martin Dario |
author |
Bonomo, Flavia |
author_facet |
Bonomo, Flavia Brešar, Boštjan Grippo, Luciano Norberto Milanič, Martin Safe, Martin Dario |
author_role |
author |
author2 |
Brešar, Boštjan Grippo, Luciano Norberto Milanič, Martin Safe, Martin Dario |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
2-DOMINATION APPROXIMATION ALGORITHM DOUBLE DOMINATION GRAPH DOMINATION INAPPROXIMABILITY INTEGER DOMINATION RAINBOW DOMINATION SPLIT GRAPH TOTAL DOMINATION |
topic |
2-DOMINATION APPROXIMATION ALGORITHM DOUBLE DOMINATION GRAPH DOMINATION INAPPROXIMABILITY INTEGER DOMINATION RAINBOW DOMINATION SPLIT GRAPH TOTAL DOMINATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 2-domination number, γw2(G), the 2-domination number, γ2(G), the {2}-domination number, γ{2}(G), the double domination number, γ×2(G), the total {2}-domination number, γt{2}(G), and the total double domination number, γt×2(G), where G is a graph in which the corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G), and two classical parameters, the domination number, γ(G), and the total domination number, γt(G), we consider 13 domination invariants in graphs. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, a large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain new complexity results regarding the existence of approximation algorithms for the studied invariants, matched with tight or almost tight inapproximability bounds, which hold even in the class of split graphs. Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Brešar, Boštjan. Institute of Mathematics, Physics and Mechanics; Eslovenia. University of Maribor; Eslovenia Fil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina Fil: Milanič, Martin. University of Primorska; Eslovenia Fil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina |
description |
In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 2-domination number, γw2(G), the 2-domination number, γ2(G), the {2}-domination number, γ{2}(G), the double domination number, γ×2(G), the total {2}-domination number, γt{2}(G), and the total double domination number, γt×2(G), where G is a graph in which the corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G), and two classical parameters, the domination number, γ(G), and the total domination number, γt(G), we consider 13 domination invariants in graphs. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, a large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain new complexity results regarding the existence of approximation algorithms for the studied invariants, matched with tight or almost tight inapproximability bounds, which hold even in the class of split graphs. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/97057 Bonomo, Flavia; Brešar, Boštjan; Grippo, Luciano Norberto; Milanič, Martin; Safe, Martin Dario; Domination parameters with number 2: Interrelations and algorithmic consequences; Elsevier Science; Discrete Applied Mathematics; 235; 1-2018; 23-50 0166-218X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/97057 |
identifier_str_mv |
Bonomo, Flavia; Brešar, Boštjan; Grippo, Luciano Norberto; Milanič, Martin; Safe, Martin Dario; Domination parameters with number 2: Interrelations and algorithmic consequences; Elsevier Science; Discrete Applied Mathematics; 235; 1-2018; 23-50 0166-218X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X17304031 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2017.08.017 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1511.00410 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269386632593408 |
score |
13.13397 |