Lie bialgebra structures on 2-step nilpotent graph algebras

Autores
Farinati, Marco A.; Jancsay, Alejandra Patricia
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión aceptada
Descripción
Fil: Farinati, Marco A. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Jancsay, Alejandra Patricia. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias; Argentina
Abstract: We generalize a result on the Heisenberg Lie algebra that gives restrictions to possible Lie bialgebra cobrackets on 2-step nilpotent algebras with some additional properties. For the class of 2-step nilpotent Lie algebras coming from graphs, we describe these extra properties in a very easy graph-combinatorial way. We exhibit applications for fn, the free 2-step nilpotent Lie algebra.
Fuente
Journal of Algebra 2018;505:70–91
Materia
ALGEBRA
CALCULO
DERIVADAS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
Repositorio Institucional (UCA)
Institución
Pontificia Universidad Católica Argentina
OAI Identificador
oai:ucacris:123456789/8308

id RIUCA_9a44397631eb1a81e51eab34fb230e28
oai_identifier_str oai:ucacris:123456789/8308
network_acronym_str RIUCA
repository_id_str 2585
network_name_str Repositorio Institucional (UCA)
spelling Lie bialgebra structures on 2-step nilpotent graph algebrasFarinati, Marco A.Jancsay, Alejandra PatriciaALGEBRACALCULODERIVADASFil: Farinati, Marco A. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Jancsay, Alejandra Patricia. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias; ArgentinaAbstract: We generalize a result on the Heisenberg Lie algebra that gives restrictions to possible Lie bialgebra cobrackets on 2-step nilpotent algebras with some additional properties. For the class of 2-step nilpotent Lie algebras coming from graphs, we describe these extra properties in a very easy graph-combinatorial way. We exhibit applications for fn, the free 2-step nilpotent Lie algebra.Elsevier2018info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/83080021-869310.1016/j.jalgebra.2018.03.003Farinati MA, Jancsa AP. Lie bialgebra structures on 2-step nilpotent graph algebras [en línea] Journal of Algebra 2018;505:70–91. doi:10.1016/j.jalgebra.2018.03.003 Disponible en: https://repositorio.uca.edu.ar/handle/123456789/8308Journal of Algebra 2018;505:70–91reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:56:46Zoai:ucacris:123456789/8308instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:56:47.184Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse
dc.title.none.fl_str_mv Lie bialgebra structures on 2-step nilpotent graph algebras
title Lie bialgebra structures on 2-step nilpotent graph algebras
spellingShingle Lie bialgebra structures on 2-step nilpotent graph algebras
Farinati, Marco A.
ALGEBRA
CALCULO
DERIVADAS
title_short Lie bialgebra structures on 2-step nilpotent graph algebras
title_full Lie bialgebra structures on 2-step nilpotent graph algebras
title_fullStr Lie bialgebra structures on 2-step nilpotent graph algebras
title_full_unstemmed Lie bialgebra structures on 2-step nilpotent graph algebras
title_sort Lie bialgebra structures on 2-step nilpotent graph algebras
dc.creator.none.fl_str_mv Farinati, Marco A.
Jancsay, Alejandra Patricia
author Farinati, Marco A.
author_facet Farinati, Marco A.
Jancsay, Alejandra Patricia
author_role author
author2 Jancsay, Alejandra Patricia
author2_role author
dc.subject.none.fl_str_mv ALGEBRA
CALCULO
DERIVADAS
topic ALGEBRA
CALCULO
DERIVADAS
dc.description.none.fl_txt_mv Fil: Farinati, Marco A. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Jancsay, Alejandra Patricia. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias; Argentina
Abstract: We generalize a result on the Heisenberg Lie algebra that gives restrictions to possible Lie bialgebra cobrackets on 2-step nilpotent algebras with some additional properties. For the class of 2-step nilpotent Lie algebras coming from graphs, we describe these extra properties in a very easy graph-combinatorial way. We exhibit applications for fn, the free 2-step nilpotent Lie algebra.
description Fil: Farinati, Marco A. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
publishDate 2018
dc.date.none.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str acceptedVersion
dc.identifier.none.fl_str_mv https://repositorio.uca.edu.ar/handle/123456789/8308
0021-8693
10.1016/j.jalgebra.2018.03.003
Farinati MA, Jancsa AP. Lie bialgebra structures on 2-step nilpotent graph algebras [en línea] Journal of Algebra 2018;505:70–91. doi:10.1016/j.jalgebra.2018.03.003 Disponible en: https://repositorio.uca.edu.ar/handle/123456789/8308
url https://repositorio.uca.edu.ar/handle/123456789/8308
identifier_str_mv 0021-8693
10.1016/j.jalgebra.2018.03.003
Farinati MA, Jancsa AP. Lie bialgebra structures on 2-step nilpotent graph algebras [en línea] Journal of Algebra 2018;505:70–91. doi:10.1016/j.jalgebra.2018.03.003 Disponible en: https://repositorio.uca.edu.ar/handle/123456789/8308
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Journal of Algebra 2018;505:70–91
reponame:Repositorio Institucional (UCA)
instname:Pontificia Universidad Católica Argentina
reponame_str Repositorio Institucional (UCA)
collection Repositorio Institucional (UCA)
instname_str Pontificia Universidad Católica Argentina
repository.name.fl_str_mv Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina
repository.mail.fl_str_mv claudia_fernandez@uca.edu.ar
_version_ 1836638346404691968
score 13.22299