Deformaciones de álgebras de Lie nilpotentes filiformes

Autores
Vera, Sonia Vanesa
Año de publicación
2017
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Tirao, Paulo Andrés, dir.
Descripción
Tesis (Doctor en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2017.
Michele Vergne inició el estudio de la geometría de la variedad algebraica de todas las álgebras o corchetes de Lie nilpotentes mostrando el rol distintivo de las álgebras de Lie nilpotentes filiformes, aquéllas de nilíndice máximo. Un concepto fundamental en este marco, es el de rigidez. Un corchete de Lie m se dice rígida si todas las álgebras de Lie en algún entorno de m, son isomorfas a m. Esta tesis está motivada por el problema conocido como Conjetura de Vergne, que afirma que ningún corchete de Lie nilpotente es rígido. Nosotros probamos que no existen álgebras de Lie filiformes complejas rígidas en la variedad de álgebras de Lie (filiformes) de dimensión menor o igual a 11. Más precisamente, mostramos que en cualquier entorno euclideo de un corchete de Lie filiforme hay un corchete de Lie filiforme no isomorfo. Este resultado se obtiene construyendo deformaciones lineales no triviales en un conjunto de abiertos densos de la variedad de álgebras de Lie filiformes de dimensión menor o igual a 11.
Michele Vergne started the study of the geometry of the algebraic variety of all nilpotente Lie algebras or brackets showing the distinctive role of the filiform nilpotent algebras, those of nilindice maximal. A fundamental concept in this frame is that of rigidity. A Lie algebra μ is said to be rigid if all other Lie algebra in a μ neighborhood are isomorphic to μ. This thesis is motivated by the problem known as Vergne’s Conjecture, open from 1970, about wich very little is know up to date, that states that no nilpotent Lie bracket is ever rigid. A linear deformation of a Lie bracket μ is a family of Lie brackets μ t , of the form μ t = μ + tφ where φ is Lie bracket which is a 2-cocycle of μ. If for all small t, μ t is not isomorphic to μ, then the deformations is non trivial and μ is not rigid. In this thesis we approached the problem of rigidity of complex filiform Lie algebras. First, we present a general method for constructing linear deformations of Lie algebras that adapt very well and result effective in the case of filiform algebras. Using this method we constructed linear deformations for any filiform. For dimension ≤ 11, in which it is possible to describe the variety of filiforms in an accessible manner, we showed that the deformations constructed are non trivial in a open dense, to deduce later the main result of the thesis: Theorem. There are not complex filiform Lie algebras of dimension ≤ 11. To prove this result we resorted to some tools of algebraic geometry and in particular to the decomposition in irreducible components of the considered varieties. This point is the main difficulty that we encountered to be able to advance in larger dimensions and in the general case.
Materia
Solvable, nilpotent (super)algebras
Lie (super)algebras associated with other structures
Algebras de Lie filiformes
Deformaciones lineales
Rigidez
Componentes irreducibles
Variedad
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Repositorio
Repositorio Digital Universitario (UNC)
Institución
Universidad Nacional de Córdoba
OAI Identificador
oai:rdu.unc.edu.ar:11086/5817

id RDUUNC_7eb13c3620602fa81b6488a654c0c948
oai_identifier_str oai:rdu.unc.edu.ar:11086/5817
network_acronym_str RDUUNC
repository_id_str 2572
network_name_str Repositorio Digital Universitario (UNC)
spelling Deformaciones de álgebras de Lie nilpotentes filiformesVera, Sonia VanesaSolvable, nilpotent (super)algebrasLie (super)algebras associated with other structuresAlgebras de Lie filiformesDeformaciones linealesRigidezComponentes irreduciblesVariedadTesis (Doctor en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2017.Michele Vergne inició el estudio de la geometría de la variedad algebraica de todas las álgebras o corchetes de Lie nilpotentes mostrando el rol distintivo de las álgebras de Lie nilpotentes filiformes, aquéllas de nilíndice máximo. Un concepto fundamental en este marco, es el de rigidez. Un corchete de Lie m se dice rígida si todas las álgebras de Lie en algún entorno de m, son isomorfas a m. Esta tesis está motivada por el problema conocido como Conjetura de Vergne, que afirma que ningún corchete de Lie nilpotente es rígido. Nosotros probamos que no existen álgebras de Lie filiformes complejas rígidas en la variedad de álgebras de Lie (filiformes) de dimensión menor o igual a 11. Más precisamente, mostramos que en cualquier entorno euclideo de un corchete de Lie filiforme hay un corchete de Lie filiforme no isomorfo. Este resultado se obtiene construyendo deformaciones lineales no triviales en un conjunto de abiertos densos de la variedad de álgebras de Lie filiformes de dimensión menor o igual a 11.Michele Vergne started the study of the geometry of the algebraic variety of all nilpotente Lie algebras or brackets showing the distinctive role of the filiform nilpotent algebras, those of nilindice maximal. A fundamental concept in this frame is that of rigidity. A Lie algebra μ is said to be rigid if all other Lie algebra in a μ neighborhood are isomorphic to μ. This thesis is motivated by the problem known as Vergne’s Conjecture, open from 1970, about wich very little is know up to date, that states that no nilpotent Lie bracket is ever rigid. A linear deformation of a Lie bracket μ is a family of Lie brackets μ t , of the form μ t = μ + tφ where φ is Lie bracket which is a 2-cocycle of μ. If for all small t, μ t is not isomorphic to μ, then the deformations is non trivial and μ is not rigid. In this thesis we approached the problem of rigidity of complex filiform Lie algebras. First, we present a general method for constructing linear deformations of Lie algebras that adapt very well and result effective in the case of filiform algebras. Using this method we constructed linear deformations for any filiform. For dimension ≤ 11, in which it is possible to describe the variety of filiforms in an accessible manner, we showed that the deformations constructed are non trivial in a open dense, to deduce later the main result of the thesis: Theorem. There are not complex filiform Lie algebras of dimension ≤ 11. To prove this result we resorted to some tools of algebraic geometry and in particular to the decomposition in irreducible components of the considered varieties. This point is the main difficulty that we encountered to be able to advance in larger dimensions and in the general case.Tirao, Paulo Andrés, dir.2017-02info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://hdl.handle.net/11086/5817spainfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-10-16T09:28:10Zoai:rdu.unc.edu.ar:11086/5817Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-10-16 09:28:10.777Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse
dc.title.none.fl_str_mv Deformaciones de álgebras de Lie nilpotentes filiformes
title Deformaciones de álgebras de Lie nilpotentes filiformes
spellingShingle Deformaciones de álgebras de Lie nilpotentes filiformes
Vera, Sonia Vanesa
Solvable, nilpotent (super)algebras
Lie (super)algebras associated with other structures
Algebras de Lie filiformes
Deformaciones lineales
Rigidez
Componentes irreducibles
Variedad
title_short Deformaciones de álgebras de Lie nilpotentes filiformes
title_full Deformaciones de álgebras de Lie nilpotentes filiformes
title_fullStr Deformaciones de álgebras de Lie nilpotentes filiformes
title_full_unstemmed Deformaciones de álgebras de Lie nilpotentes filiformes
title_sort Deformaciones de álgebras de Lie nilpotentes filiformes
dc.creator.none.fl_str_mv Vera, Sonia Vanesa
author Vera, Sonia Vanesa
author_facet Vera, Sonia Vanesa
author_role author
dc.contributor.none.fl_str_mv Tirao, Paulo Andrés, dir.
dc.subject.none.fl_str_mv Solvable, nilpotent (super)algebras
Lie (super)algebras associated with other structures
Algebras de Lie filiformes
Deformaciones lineales
Rigidez
Componentes irreducibles
Variedad
topic Solvable, nilpotent (super)algebras
Lie (super)algebras associated with other structures
Algebras de Lie filiformes
Deformaciones lineales
Rigidez
Componentes irreducibles
Variedad
dc.description.none.fl_txt_mv Tesis (Doctor en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2017.
Michele Vergne inició el estudio de la geometría de la variedad algebraica de todas las álgebras o corchetes de Lie nilpotentes mostrando el rol distintivo de las álgebras de Lie nilpotentes filiformes, aquéllas de nilíndice máximo. Un concepto fundamental en este marco, es el de rigidez. Un corchete de Lie m se dice rígida si todas las álgebras de Lie en algún entorno de m, son isomorfas a m. Esta tesis está motivada por el problema conocido como Conjetura de Vergne, que afirma que ningún corchete de Lie nilpotente es rígido. Nosotros probamos que no existen álgebras de Lie filiformes complejas rígidas en la variedad de álgebras de Lie (filiformes) de dimensión menor o igual a 11. Más precisamente, mostramos que en cualquier entorno euclideo de un corchete de Lie filiforme hay un corchete de Lie filiforme no isomorfo. Este resultado se obtiene construyendo deformaciones lineales no triviales en un conjunto de abiertos densos de la variedad de álgebras de Lie filiformes de dimensión menor o igual a 11.
Michele Vergne started the study of the geometry of the algebraic variety of all nilpotente Lie algebras or brackets showing the distinctive role of the filiform nilpotent algebras, those of nilindice maximal. A fundamental concept in this frame is that of rigidity. A Lie algebra μ is said to be rigid if all other Lie algebra in a μ neighborhood are isomorphic to μ. This thesis is motivated by the problem known as Vergne’s Conjecture, open from 1970, about wich very little is know up to date, that states that no nilpotent Lie bracket is ever rigid. A linear deformation of a Lie bracket μ is a family of Lie brackets μ t , of the form μ t = μ + tφ where φ is Lie bracket which is a 2-cocycle of μ. If for all small t, μ t is not isomorphic to μ, then the deformations is non trivial and μ is not rigid. In this thesis we approached the problem of rigidity of complex filiform Lie algebras. First, we present a general method for constructing linear deformations of Lie algebras that adapt very well and result effective in the case of filiform algebras. Using this method we constructed linear deformations for any filiform. For dimension ≤ 11, in which it is possible to describe the variety of filiforms in an accessible manner, we showed that the deformations constructed are non trivial in a open dense, to deduce later the main result of the thesis: Theorem. There are not complex filiform Lie algebras of dimension ≤ 11. To prove this result we resorted to some tools of algebraic geometry and in particular to the decomposition in irreducible components of the considered varieties. This point is the main difficulty that we encountered to be able to advance in larger dimensions and in the general case.
description Tesis (Doctor en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2017.
publishDate 2017
dc.date.none.fl_str_mv 2017-02
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11086/5817
url http://hdl.handle.net/11086/5817
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Digital Universitario (UNC)
instname:Universidad Nacional de Córdoba
instacron:UNC
reponame_str Repositorio Digital Universitario (UNC)
collection Repositorio Digital Universitario (UNC)
instname_str Universidad Nacional de Córdoba
instacron_str UNC
institution UNC
repository.name.fl_str_mv Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba
repository.mail.fl_str_mv oca.unc@gmail.com
_version_ 1846143323350237184
score 12.712165