A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60
- Autores
- Molinari, F. N.; Mancuso, M. A.; Bilbao, E.; Giménez, G.; Monsalve, L. N.
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work electron radiation microdevices were fabricated and characterized. The microdevices consisted of aligned conductive electrospun fibers made of polycaprolactone loaded with multiwalled carbon nanotubes and C60 deposited onto gold interdigitated microelectrodes. They were capable of permanently increasing their conductivity upon exposure to electron beam irradiation from 0.02 pC μm-2 accelerated at 10 and 20 keV. This phenomenon could be explained due to the ability of C60 to trap and stabilize negative charges and thus contribute to the conductivity of the polymer composite. The microdevices achieved their maximum conductivity after an irradiation between 0.22 and 0.27 pC μm-2 and this maximum was dependent of the electron acceler ation. Montecarlo simulations were performed to explain dependence as function of electron penetration in the polymer composite. Moreover, the microdevices irradiated at 20 keV maintained their final conductivity and the microdevices irradiated at 10 keV increased their final conductivity after 6 days from irradiation. C60 proved to act as highly efficient electron scavengers within the polymer composite and contribute to its conductivity, and the microdevices have potential application as beta radiation sensors.
Fil: Molinari, F. N. Instituto Nacional de Tecnología Industrial. Textiles (INTI-Textiles); Argentina
Fil: Molinari, F. N. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: Mancuso, M. A. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: Bilbao, E. Instituto Nacional de Tecnología Industrial. Micro y Nanotecnologías (INTI); Argentina
Fil: Giménez, G. Instituto Nacional de Tecnología Industrial. Micro y Nanotecnologías (INTI); Argentina
Fil: Monsalve, L. N. Instituto Nacional de Tecnología Industrial. Textiles (INTI-Textiles); Argentina
Fil: Monsalve, L. N. Universidad Nacional de San Martín. Instituto de la Calidad Industrial (UNSAM-INCALIN); Argentina
Fil: Monsalve, L. N. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina - Fuente
- Nano Trends, 10 (2025): 100116
- Materia
-
Sensores
Microsensores
Policarbonatos
Nanotubos de carbono - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Industrial
- OAI Identificador
- nuevadc:2025MolinariF_pdf
Ver los metadatos del registro completo
id |
RIINTI_77920756cca38643c738b720e75e42ba |
---|---|
oai_identifier_str |
nuevadc:2025MolinariF_pdf |
network_acronym_str |
RIINTI |
repository_id_str |
|
network_name_str |
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) |
spelling |
A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60Molinari, F. N.Mancuso, M. A.Bilbao, E.Giménez, G.Monsalve, L. N.SensoresMicrosensoresPolicarbonatosNanotubos de carbonoIn this work electron radiation microdevices were fabricated and characterized. The microdevices consisted of aligned conductive electrospun fibers made of polycaprolactone loaded with multiwalled carbon nanotubes and C60 deposited onto gold interdigitated microelectrodes. They were capable of permanently increasing their conductivity upon exposure to electron beam irradiation from 0.02 pC μm-2 accelerated at 10 and 20 keV. This phenomenon could be explained due to the ability of C60 to trap and stabilize negative charges and thus contribute to the conductivity of the polymer composite. The microdevices achieved their maximum conductivity after an irradiation between 0.22 and 0.27 pC μm-2 and this maximum was dependent of the electron acceler ation. Montecarlo simulations were performed to explain dependence as function of electron penetration in the polymer composite. Moreover, the microdevices irradiated at 20 keV maintained their final conductivity and the microdevices irradiated at 10 keV increased their final conductivity after 6 days from irradiation. C60 proved to act as highly efficient electron scavengers within the polymer composite and contribute to its conductivity, and the microdevices have potential application as beta radiation sensors.Fil: Molinari, F. N. Instituto Nacional de Tecnología Industrial. Textiles (INTI-Textiles); ArgentinaFil: Molinari, F. N. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); ItaliaFil: Mancuso, M. A. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); ItaliaFil: Bilbao, E. Instituto Nacional de Tecnología Industrial. Micro y Nanotecnologías (INTI); ArgentinaFil: Giménez, G. Instituto Nacional de Tecnología Industrial. Micro y Nanotecnologías (INTI); ArgentinaFil: Monsalve, L. N. Instituto Nacional de Tecnología Industrial. Textiles (INTI-Textiles); ArgentinaFil: Monsalve, L. N. Universidad Nacional de San Martín. Instituto de la Calidad Industrial (UNSAM-INCALIN); ArgentinaFil: Monsalve, L. N. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); ArgentinaElsevier2025info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf2025MolinariF.pdfhttps://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2025Moli/nariF_pd.dir/doc.pdfNano Trends, 10 (2025): 100116reponame:Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)instname:Instituto Nacional de Tecnología Industrialenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/openAccess2025-09-29T15:02:06Znuevadc:2025MolinariF_pdfinstacron:INTIInstitucionalhttps://app.inti.gob.ar/greenstone3/biblioOrganismo científico-tecnológicohttps://argentina.gob.ar/intihttps://app.inti.gob.ar/greenstone3/oaiserver?verb=Identifypfalcato@inti.gob.arArgentinaopendoar:2025-09-29 15:02:06.965Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) - Instituto Nacional de Tecnología Industrialfalse |
dc.title.none.fl_str_mv |
A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60 |
title |
A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60 |
spellingShingle |
A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60 Molinari, F. N. Sensores Microsensores Policarbonatos Nanotubos de carbono |
title_short |
A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60 |
title_full |
A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60 |
title_fullStr |
A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60 |
title_full_unstemmed |
A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60 |
title_sort |
A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60 |
dc.creator.none.fl_str_mv |
Molinari, F. N. Mancuso, M. A. Bilbao, E. Giménez, G. Monsalve, L. N. |
author |
Molinari, F. N. |
author_facet |
Molinari, F. N. Mancuso, M. A. Bilbao, E. Giménez, G. Monsalve, L. N. |
author_role |
author |
author2 |
Mancuso, M. A. Bilbao, E. Giménez, G. Monsalve, L. N. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Sensores Microsensores Policarbonatos Nanotubos de carbono |
topic |
Sensores Microsensores Policarbonatos Nanotubos de carbono |
dc.description.none.fl_txt_mv |
In this work electron radiation microdevices were fabricated and characterized. The microdevices consisted of aligned conductive electrospun fibers made of polycaprolactone loaded with multiwalled carbon nanotubes and C60 deposited onto gold interdigitated microelectrodes. They were capable of permanently increasing their conductivity upon exposure to electron beam irradiation from 0.02 pC μm-2 accelerated at 10 and 20 keV. This phenomenon could be explained due to the ability of C60 to trap and stabilize negative charges and thus contribute to the conductivity of the polymer composite. The microdevices achieved their maximum conductivity after an irradiation between 0.22 and 0.27 pC μm-2 and this maximum was dependent of the electron acceler ation. Montecarlo simulations were performed to explain dependence as function of electron penetration in the polymer composite. Moreover, the microdevices irradiated at 20 keV maintained their final conductivity and the microdevices irradiated at 10 keV increased their final conductivity after 6 days from irradiation. C60 proved to act as highly efficient electron scavengers within the polymer composite and contribute to its conductivity, and the microdevices have potential application as beta radiation sensors. Fil: Molinari, F. N. Instituto Nacional de Tecnología Industrial. Textiles (INTI-Textiles); Argentina Fil: Molinari, F. N. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia Fil: Mancuso, M. A. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia Fil: Bilbao, E. Instituto Nacional de Tecnología Industrial. Micro y Nanotecnologías (INTI); Argentina Fil: Giménez, G. Instituto Nacional de Tecnología Industrial. Micro y Nanotecnologías (INTI); Argentina Fil: Monsalve, L. N. Instituto Nacional de Tecnología Industrial. Textiles (INTI-Textiles); Argentina Fil: Monsalve, L. N. Universidad Nacional de San Martín. Instituto de la Calidad Industrial (UNSAM-INCALIN); Argentina Fil: Monsalve, L. N. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina |
description |
In this work electron radiation microdevices were fabricated and characterized. The microdevices consisted of aligned conductive electrospun fibers made of polycaprolactone loaded with multiwalled carbon nanotubes and C60 deposited onto gold interdigitated microelectrodes. They were capable of permanently increasing their conductivity upon exposure to electron beam irradiation from 0.02 pC μm-2 accelerated at 10 and 20 keV. This phenomenon could be explained due to the ability of C60 to trap and stabilize negative charges and thus contribute to the conductivity of the polymer composite. The microdevices achieved their maximum conductivity after an irradiation between 0.22 and 0.27 pC μm-2 and this maximum was dependent of the electron acceler ation. Montecarlo simulations were performed to explain dependence as function of electron penetration in the polymer composite. Moreover, the microdevices irradiated at 20 keV maintained their final conductivity and the microdevices irradiated at 10 keV increased their final conductivity after 6 days from irradiation. C60 proved to act as highly efficient electron scavengers within the polymer composite and contribute to its conductivity, and the microdevices have potential application as beta radiation sensors. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
2025MolinariF.pdf https://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2025Moli/nariF_pd.dir/doc.pdf |
identifier_str_mv |
2025MolinariF.pdf |
url |
https://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2025Moli/nariF_pd.dir/doc.pdf |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ openAccess |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
Nano Trends, 10 (2025): 100116 reponame:Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) instname:Instituto Nacional de Tecnología Industrial |
reponame_str |
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) |
collection |
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) |
instname_str |
Instituto Nacional de Tecnología Industrial |
repository.name.fl_str_mv |
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) - Instituto Nacional de Tecnología Industrial |
repository.mail.fl_str_mv |
pfalcato@inti.gob.ar |
_version_ |
1844623656145125377 |
score |
12.559606 |