A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60

Autores
Molinari, F. N.; Mancuso, M. A.; Bilbao, E.; Giménez, G.; Monsalve, L. N.
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work electron radiation microdevices were fabricated and characterized. The microdevices consisted of aligned conductive electrospun fibers made of polycaprolactone loaded with multiwalled carbon nanotubes and C60 deposited onto gold interdigitated microelectrodes. They were capable of permanently increasing their conductivity upon exposure to electron beam irradiation from 0.02 pC μm-2 accelerated at 10 and 20 keV. This phenomenon could be explained due to the ability of C60 to trap and stabilize negative charges and thus contribute to the conductivity of the polymer composite. The microdevices achieved their maximum conductivity after an irradiation between 0.22 and 0.27 pC μm-2 and this maximum was dependent of the electron acceler­ ation. Montecarlo simulations were performed to explain dependence as function of electron penetration in the polymer composite. Moreover, the microdevices irradiated at 20 keV maintained their final conductivity and the microdevices irradiated at 10 keV increased their final conductivity after 6 days from irradiation. C60 proved to act as highly efficient electron scavengers within the polymer composite and contribute to its conductivity, and the microdevices have potential application as beta radiation sensors.
Fil: Molinari, F. N. Instituto Nacional de Tecnología Industrial. Textiles (INTI-Textiles); Argentina
Fil: Molinari, F. N. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: Mancuso, M. A. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: Bilbao, E. Instituto Nacional de Tecnología Industrial. Micro y Nanotecnologías (INTI); Argentina
Fil: Giménez, G. Instituto Nacional de Tecnología Industrial. Micro y Nanotecnologías (INTI); Argentina
Fil: Monsalve, L. N. Instituto Nacional de Tecnología Industrial. Textiles (INTI-Textiles); Argentina
Fil: Monsalve, L. N. Universidad Nacional de San Martín. Instituto de la Calidad Industrial (UNSAM-INCALIN); Argentina
Fil: Monsalve, L. N. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
Fuente
Nano Trends, 10 (2025): 100116
Materia
Sensores
Microsensores
Policarbonatos
Nanotubos de carbono
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/4.0/
Repositorio
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)
Institución
Instituto Nacional de Tecnología Industrial
OAI Identificador
nuevadc:2025MolinariF_pdf

id RIINTI_77920756cca38643c738b720e75e42ba
oai_identifier_str nuevadc:2025MolinariF_pdf
network_acronym_str RIINTI
repository_id_str
network_name_str Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)
spelling A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60Molinari, F. N.Mancuso, M. A.Bilbao, E.Giménez, G.Monsalve, L. N.SensoresMicrosensoresPolicarbonatosNanotubos de carbonoIn this work electron radiation microdevices were fabricated and characterized. The microdevices consisted of aligned conductive electrospun fibers made of polycaprolactone loaded with multiwalled carbon nanotubes and C60 deposited onto gold interdigitated microelectrodes. They were capable of permanently increasing their conductivity upon exposure to electron beam irradiation from 0.02 pC μm-2 accelerated at 10 and 20 keV. This phenomenon could be explained due to the ability of C60 to trap and stabilize negative charges and thus contribute to the conductivity of the polymer composite. The microdevices achieved their maximum conductivity after an irradiation between 0.22 and 0.27 pC μm-2 and this maximum was dependent of the electron acceler­ ation. Montecarlo simulations were performed to explain dependence as function of electron penetration in the polymer composite. Moreover, the microdevices irradiated at 20 keV maintained their final conductivity and the microdevices irradiated at 10 keV increased their final conductivity after 6 days from irradiation. C60 proved to act as highly efficient electron scavengers within the polymer composite and contribute to its conductivity, and the microdevices have potential application as beta radiation sensors.Fil: Molinari, F. N. Instituto Nacional de Tecnología Industrial. Textiles (INTI-Textiles); ArgentinaFil: Molinari, F. N. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); ItaliaFil: Mancuso, M. A. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); ItaliaFil: Bilbao, E. Instituto Nacional de Tecnología Industrial. Micro y Nanotecnologías (INTI); ArgentinaFil: Giménez, G. Instituto Nacional de Tecnología Industrial. Micro y Nanotecnologías (INTI); ArgentinaFil: Monsalve, L. N. Instituto Nacional de Tecnología Industrial. Textiles (INTI-Textiles); ArgentinaFil: Monsalve, L. N. Universidad Nacional de San Martín. Instituto de la Calidad Industrial (UNSAM-INCALIN); ArgentinaFil: Monsalve, L. N. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); ArgentinaElsevier2025info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf2025MolinariF.pdfhttps://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2025Moli/nariF_pd.dir/doc.pdfNano Trends, 10 (2025): 100116reponame:Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)instname:Instituto Nacional de Tecnología Industrialenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/openAccess2025-09-29T15:02:06Znuevadc:2025MolinariF_pdfinstacron:INTIInstitucionalhttps://app.inti.gob.ar/greenstone3/biblioOrganismo científico-tecnológicohttps://argentina.gob.ar/intihttps://app.inti.gob.ar/greenstone3/oaiserver?verb=Identifypfalcato@inti.gob.arArgentinaopendoar:2025-09-29 15:02:06.965Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) - Instituto Nacional de Tecnología Industrialfalse
dc.title.none.fl_str_mv A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60
title A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60
spellingShingle A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60
Molinari, F. N.
Sensores
Microsensores
Policarbonatos
Nanotubos de carbono
title_short A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60
title_full A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60
title_fullStr A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60
title_full_unstemmed A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60
title_sort A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60
dc.creator.none.fl_str_mv Molinari, F. N.
Mancuso, M. A.
Bilbao, E.
Giménez, G.
Monsalve, L. N.
author Molinari, F. N.
author_facet Molinari, F. N.
Mancuso, M. A.
Bilbao, E.
Giménez, G.
Monsalve, L. N.
author_role author
author2 Mancuso, M. A.
Bilbao, E.
Giménez, G.
Monsalve, L. N.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Sensores
Microsensores
Policarbonatos
Nanotubos de carbono
topic Sensores
Microsensores
Policarbonatos
Nanotubos de carbono
dc.description.none.fl_txt_mv In this work electron radiation microdevices were fabricated and characterized. The microdevices consisted of aligned conductive electrospun fibers made of polycaprolactone loaded with multiwalled carbon nanotubes and C60 deposited onto gold interdigitated microelectrodes. They were capable of permanently increasing their conductivity upon exposure to electron beam irradiation from 0.02 pC μm-2 accelerated at 10 and 20 keV. This phenomenon could be explained due to the ability of C60 to trap and stabilize negative charges and thus contribute to the conductivity of the polymer composite. The microdevices achieved their maximum conductivity after an irradiation between 0.22 and 0.27 pC μm-2 and this maximum was dependent of the electron acceler­ ation. Montecarlo simulations were performed to explain dependence as function of electron penetration in the polymer composite. Moreover, the microdevices irradiated at 20 keV maintained their final conductivity and the microdevices irradiated at 10 keV increased their final conductivity after 6 days from irradiation. C60 proved to act as highly efficient electron scavengers within the polymer composite and contribute to its conductivity, and the microdevices have potential application as beta radiation sensors.
Fil: Molinari, F. N. Instituto Nacional de Tecnología Industrial. Textiles (INTI-Textiles); Argentina
Fil: Molinari, F. N. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: Mancuso, M. A. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: Bilbao, E. Instituto Nacional de Tecnología Industrial. Micro y Nanotecnologías (INTI); Argentina
Fil: Giménez, G. Instituto Nacional de Tecnología Industrial. Micro y Nanotecnologías (INTI); Argentina
Fil: Monsalve, L. N. Instituto Nacional de Tecnología Industrial. Textiles (INTI-Textiles); Argentina
Fil: Monsalve, L. N. Universidad Nacional de San Martín. Instituto de la Calidad Industrial (UNSAM-INCALIN); Argentina
Fil: Monsalve, L. N. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
description In this work electron radiation microdevices were fabricated and characterized. The microdevices consisted of aligned conductive electrospun fibers made of polycaprolactone loaded with multiwalled carbon nanotubes and C60 deposited onto gold interdigitated microelectrodes. They were capable of permanently increasing their conductivity upon exposure to electron beam irradiation from 0.02 pC μm-2 accelerated at 10 and 20 keV. This phenomenon could be explained due to the ability of C60 to trap and stabilize negative charges and thus contribute to the conductivity of the polymer composite. The microdevices achieved their maximum conductivity after an irradiation between 0.22 and 0.27 pC μm-2 and this maximum was dependent of the electron acceler­ ation. Montecarlo simulations were performed to explain dependence as function of electron penetration in the polymer composite. Moreover, the microdevices irradiated at 20 keV maintained their final conductivity and the microdevices irradiated at 10 keV increased their final conductivity after 6 days from irradiation. C60 proved to act as highly efficient electron scavengers within the polymer composite and contribute to its conductivity, and the microdevices have potential application as beta radiation sensors.
publishDate 2025
dc.date.none.fl_str_mv 2025
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv 2025MolinariF.pdf
https://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2025Moli/nariF_pd.dir/doc.pdf
identifier_str_mv 2025MolinariF.pdf
url https://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2025Moli/nariF_pd.dir/doc.pdf
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/4.0/
openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Nano Trends, 10 (2025): 100116
reponame:Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)
instname:Instituto Nacional de Tecnología Industrial
reponame_str Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)
collection Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)
instname_str Instituto Nacional de Tecnología Industrial
repository.name.fl_str_mv Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) - Instituto Nacional de Tecnología Industrial
repository.mail.fl_str_mv pfalcato@inti.gob.ar
_version_ 1844623656145125377
score 12.559606