A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60

Autores
Molinari, Fabricio Nicolás; Mancuso, Maria A.; Bilbao, Emanuel; Giménez, Gustavo; Monsalve, Leandro Nicolas
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work electron radiation microdevices were fabricated and characterized. The microdevices consisted of aligned conductive electrospun fibers made of polycaprolactone loaded with multiwalled carbon nanotubes and C60 deposited onto gold interdigitated microelectrodes. They were capable of permanently increasing their conductivity upon exposure to electron beam irradiation from 0.02 pC μm-2 accelerated at 10 and 20 keV. This phenomenon could be explained due to the ability of C60 to trap and stabilize negative charges and thus contribute to the conductivity of the polymer composite. The microdevices achieved their maximum conductivity after an irradiation between 0.22 and 0.27 pC μm-2 and this maximum was dependent of the electron acceleration. Montecarlo simulations were performed to explain dependence as function of electron penetration in the polymer composite. Moreover, the microdevices irradiated at 20 keV maintained their final conductivity and the microdevices irradiated at 10 keV increased their final conductivity after 6 days from irradiation. C60 proved to act as highly efficient electron scavengers within the polymer composite and contribute to its conductivity, and the microdevices have potential application as beta radiation sensors.
Fil: Molinari, Fabricio Nicolás. Consiglio Nazionale delle Ricerche; Italia
Fil: Mancuso, Maria A.. Consiglio Nazionale delle Ricerche; Italia
Fil: Bilbao, Emanuel. Instituto Nacional de Tecnología Industrial; Argentina
Fil: Giménez, Gustavo. Instituto Nacional de Tecnología Industrial; Argentina
Fil: Monsalve, Leandro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Industrial; Argentina
Materia
CONDUCTIVE NANOCOMPOSITE
RESISTIVE SENSOR
DOSIMETER
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/267759

id CONICETDig_4c927516a9b1e506af393d295f23a643
oai_identifier_str oai:ri.conicet.gov.ar:11336/267759
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60Molinari, Fabricio NicolásMancuso, Maria A.Bilbao, EmanuelGiménez, GustavoMonsalve, Leandro NicolasCONDUCTIVE NANOCOMPOSITERESISTIVE SENSORDOSIMETERhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2In this work electron radiation microdevices were fabricated and characterized. The microdevices consisted of aligned conductive electrospun fibers made of polycaprolactone loaded with multiwalled carbon nanotubes and C60 deposited onto gold interdigitated microelectrodes. They were capable of permanently increasing their conductivity upon exposure to electron beam irradiation from 0.02 pC μm-2 accelerated at 10 and 20 keV. This phenomenon could be explained due to the ability of C60 to trap and stabilize negative charges and thus contribute to the conductivity of the polymer composite. The microdevices achieved their maximum conductivity after an irradiation between 0.22 and 0.27 pC μm-2 and this maximum was dependent of the electron acceleration. Montecarlo simulations were performed to explain dependence as function of electron penetration in the polymer composite. Moreover, the microdevices irradiated at 20 keV maintained their final conductivity and the microdevices irradiated at 10 keV increased their final conductivity after 6 days from irradiation. C60 proved to act as highly efficient electron scavengers within the polymer composite and contribute to its conductivity, and the microdevices have potential application as beta radiation sensors.Fil: Molinari, Fabricio Nicolás. Consiglio Nazionale delle Ricerche; ItaliaFil: Mancuso, Maria A.. Consiglio Nazionale delle Ricerche; ItaliaFil: Bilbao, Emanuel. Instituto Nacional de Tecnología Industrial; ArgentinaFil: Giménez, Gustavo. Instituto Nacional de Tecnología Industrial; ArgentinaFil: Monsalve, Leandro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Industrial; ArgentinaElsevier2025-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/267759Molinari, Fabricio Nicolás; Mancuso, Maria A.; Bilbao, Emanuel; Giménez, Gustavo; Monsalve, Leandro Nicolas; A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60; Elsevier; Nano Trends; 10; 6-2025; 1-72666-9781CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2666978125000455info:eu-repo/semantics/altIdentifier/doi/10.1016/j.nwnano.2025.100116info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:05Zoai:ri.conicet.gov.ar:11336/267759instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:05.948CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60
title A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60
spellingShingle A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60
Molinari, Fabricio Nicolás
CONDUCTIVE NANOCOMPOSITE
RESISTIVE SENSOR
DOSIMETER
title_short A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60
title_full A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60
title_fullStr A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60
title_full_unstemmed A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60
title_sort A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60
dc.creator.none.fl_str_mv Molinari, Fabricio Nicolás
Mancuso, Maria A.
Bilbao, Emanuel
Giménez, Gustavo
Monsalve, Leandro Nicolas
author Molinari, Fabricio Nicolás
author_facet Molinari, Fabricio Nicolás
Mancuso, Maria A.
Bilbao, Emanuel
Giménez, Gustavo
Monsalve, Leandro Nicolas
author_role author
author2 Mancuso, Maria A.
Bilbao, Emanuel
Giménez, Gustavo
Monsalve, Leandro Nicolas
author2_role author
author
author
author
dc.subject.none.fl_str_mv CONDUCTIVE NANOCOMPOSITE
RESISTIVE SENSOR
DOSIMETER
topic CONDUCTIVE NANOCOMPOSITE
RESISTIVE SENSOR
DOSIMETER
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this work electron radiation microdevices were fabricated and characterized. The microdevices consisted of aligned conductive electrospun fibers made of polycaprolactone loaded with multiwalled carbon nanotubes and C60 deposited onto gold interdigitated microelectrodes. They were capable of permanently increasing their conductivity upon exposure to electron beam irradiation from 0.02 pC μm-2 accelerated at 10 and 20 keV. This phenomenon could be explained due to the ability of C60 to trap and stabilize negative charges and thus contribute to the conductivity of the polymer composite. The microdevices achieved their maximum conductivity after an irradiation between 0.22 and 0.27 pC μm-2 and this maximum was dependent of the electron acceleration. Montecarlo simulations were performed to explain dependence as function of electron penetration in the polymer composite. Moreover, the microdevices irradiated at 20 keV maintained their final conductivity and the microdevices irradiated at 10 keV increased their final conductivity after 6 days from irradiation. C60 proved to act as highly efficient electron scavengers within the polymer composite and contribute to its conductivity, and the microdevices have potential application as beta radiation sensors.
Fil: Molinari, Fabricio Nicolás. Consiglio Nazionale delle Ricerche; Italia
Fil: Mancuso, Maria A.. Consiglio Nazionale delle Ricerche; Italia
Fil: Bilbao, Emanuel. Instituto Nacional de Tecnología Industrial; Argentina
Fil: Giménez, Gustavo. Instituto Nacional de Tecnología Industrial; Argentina
Fil: Monsalve, Leandro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Industrial; Argentina
description In this work electron radiation microdevices were fabricated and characterized. The microdevices consisted of aligned conductive electrospun fibers made of polycaprolactone loaded with multiwalled carbon nanotubes and C60 deposited onto gold interdigitated microelectrodes. They were capable of permanently increasing their conductivity upon exposure to electron beam irradiation from 0.02 pC μm-2 accelerated at 10 and 20 keV. This phenomenon could be explained due to the ability of C60 to trap and stabilize negative charges and thus contribute to the conductivity of the polymer composite. The microdevices achieved their maximum conductivity after an irradiation between 0.22 and 0.27 pC μm-2 and this maximum was dependent of the electron acceleration. Montecarlo simulations were performed to explain dependence as function of electron penetration in the polymer composite. Moreover, the microdevices irradiated at 20 keV maintained their final conductivity and the microdevices irradiated at 10 keV increased their final conductivity after 6 days from irradiation. C60 proved to act as highly efficient electron scavengers within the polymer composite and contribute to its conductivity, and the microdevices have potential application as beta radiation sensors.
publishDate 2025
dc.date.none.fl_str_mv 2025-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/267759
Molinari, Fabricio Nicolás; Mancuso, Maria A.; Bilbao, Emanuel; Giménez, Gustavo; Monsalve, Leandro Nicolas; A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60; Elsevier; Nano Trends; 10; 6-2025; 1-7
2666-9781
CONICET Digital
CONICET
url http://hdl.handle.net/11336/267759
identifier_str_mv Molinari, Fabricio Nicolás; Mancuso, Maria A.; Bilbao, Emanuel; Giménez, Gustavo; Monsalve, Leandro Nicolas; A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60; Elsevier; Nano Trends; 10; 6-2025; 1-7
2666-9781
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2666978125000455
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.nwnano.2025.100116
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613090696495104
score 13.070432