A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60
- Autores
- Molinari, Fabricio Nicolás; Mancuso, Maria A.; Bilbao, Emanuel; Giménez, Gustavo; Monsalve, Leandro Nicolas
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work electron radiation microdevices were fabricated and characterized. The microdevices consisted of aligned conductive electrospun fibers made of polycaprolactone loaded with multiwalled carbon nanotubes and C60 deposited onto gold interdigitated microelectrodes. They were capable of permanently increasing their conductivity upon exposure to electron beam irradiation from 0.02 pC μm-2 accelerated at 10 and 20 keV. This phenomenon could be explained due to the ability of C60 to trap and stabilize negative charges and thus contribute to the conductivity of the polymer composite. The microdevices achieved their maximum conductivity after an irradiation between 0.22 and 0.27 pC μm-2 and this maximum was dependent of the electron acceleration. Montecarlo simulations were performed to explain dependence as function of electron penetration in the polymer composite. Moreover, the microdevices irradiated at 20 keV maintained their final conductivity and the microdevices irradiated at 10 keV increased their final conductivity after 6 days from irradiation. C60 proved to act as highly efficient electron scavengers within the polymer composite and contribute to its conductivity, and the microdevices have potential application as beta radiation sensors.
Fil: Molinari, Fabricio Nicolás. Consiglio Nazionale delle Ricerche; Italia
Fil: Mancuso, Maria A.. Consiglio Nazionale delle Ricerche; Italia
Fil: Bilbao, Emanuel. Instituto Nacional de Tecnología Industrial; Argentina
Fil: Giménez, Gustavo. Instituto Nacional de Tecnología Industrial; Argentina
Fil: Monsalve, Leandro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Industrial; Argentina - Materia
-
CONDUCTIVE NANOCOMPOSITE
RESISTIVE SENSOR
DOSIMETER - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/267759
Ver los metadatos del registro completo
id |
CONICETDig_4c927516a9b1e506af393d295f23a643 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/267759 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60Molinari, Fabricio NicolásMancuso, Maria A.Bilbao, EmanuelGiménez, GustavoMonsalve, Leandro NicolasCONDUCTIVE NANOCOMPOSITERESISTIVE SENSORDOSIMETERhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2In this work electron radiation microdevices were fabricated and characterized. The microdevices consisted of aligned conductive electrospun fibers made of polycaprolactone loaded with multiwalled carbon nanotubes and C60 deposited onto gold interdigitated microelectrodes. They were capable of permanently increasing their conductivity upon exposure to electron beam irradiation from 0.02 pC μm-2 accelerated at 10 and 20 keV. This phenomenon could be explained due to the ability of C60 to trap and stabilize negative charges and thus contribute to the conductivity of the polymer composite. The microdevices achieved their maximum conductivity after an irradiation between 0.22 and 0.27 pC μm-2 and this maximum was dependent of the electron acceleration. Montecarlo simulations were performed to explain dependence as function of electron penetration in the polymer composite. Moreover, the microdevices irradiated at 20 keV maintained their final conductivity and the microdevices irradiated at 10 keV increased their final conductivity after 6 days from irradiation. C60 proved to act as highly efficient electron scavengers within the polymer composite and contribute to its conductivity, and the microdevices have potential application as beta radiation sensors.Fil: Molinari, Fabricio Nicolás. Consiglio Nazionale delle Ricerche; ItaliaFil: Mancuso, Maria A.. Consiglio Nazionale delle Ricerche; ItaliaFil: Bilbao, Emanuel. Instituto Nacional de Tecnología Industrial; ArgentinaFil: Giménez, Gustavo. Instituto Nacional de Tecnología Industrial; ArgentinaFil: Monsalve, Leandro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Industrial; ArgentinaElsevier2025-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/267759Molinari, Fabricio Nicolás; Mancuso, Maria A.; Bilbao, Emanuel; Giménez, Gustavo; Monsalve, Leandro Nicolas; A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60; Elsevier; Nano Trends; 10; 6-2025; 1-72666-9781CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2666978125000455info:eu-repo/semantics/altIdentifier/doi/10.1016/j.nwnano.2025.100116info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:05Zoai:ri.conicet.gov.ar:11336/267759instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:05.948CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60 |
title |
A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60 |
spellingShingle |
A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60 Molinari, Fabricio Nicolás CONDUCTIVE NANOCOMPOSITE RESISTIVE SENSOR DOSIMETER |
title_short |
A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60 |
title_full |
A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60 |
title_fullStr |
A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60 |
title_full_unstemmed |
A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60 |
title_sort |
A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60 |
dc.creator.none.fl_str_mv |
Molinari, Fabricio Nicolás Mancuso, Maria A. Bilbao, Emanuel Giménez, Gustavo Monsalve, Leandro Nicolas |
author |
Molinari, Fabricio Nicolás |
author_facet |
Molinari, Fabricio Nicolás Mancuso, Maria A. Bilbao, Emanuel Giménez, Gustavo Monsalve, Leandro Nicolas |
author_role |
author |
author2 |
Mancuso, Maria A. Bilbao, Emanuel Giménez, Gustavo Monsalve, Leandro Nicolas |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
CONDUCTIVE NANOCOMPOSITE RESISTIVE SENSOR DOSIMETER |
topic |
CONDUCTIVE NANOCOMPOSITE RESISTIVE SENSOR DOSIMETER |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work electron radiation microdevices were fabricated and characterized. The microdevices consisted of aligned conductive electrospun fibers made of polycaprolactone loaded with multiwalled carbon nanotubes and C60 deposited onto gold interdigitated microelectrodes. They were capable of permanently increasing their conductivity upon exposure to electron beam irradiation from 0.02 pC μm-2 accelerated at 10 and 20 keV. This phenomenon could be explained due to the ability of C60 to trap and stabilize negative charges and thus contribute to the conductivity of the polymer composite. The microdevices achieved their maximum conductivity after an irradiation between 0.22 and 0.27 pC μm-2 and this maximum was dependent of the electron acceleration. Montecarlo simulations were performed to explain dependence as function of electron penetration in the polymer composite. Moreover, the microdevices irradiated at 20 keV maintained their final conductivity and the microdevices irradiated at 10 keV increased their final conductivity after 6 days from irradiation. C60 proved to act as highly efficient electron scavengers within the polymer composite and contribute to its conductivity, and the microdevices have potential application as beta radiation sensors. Fil: Molinari, Fabricio Nicolás. Consiglio Nazionale delle Ricerche; Italia Fil: Mancuso, Maria A.. Consiglio Nazionale delle Ricerche; Italia Fil: Bilbao, Emanuel. Instituto Nacional de Tecnología Industrial; Argentina Fil: Giménez, Gustavo. Instituto Nacional de Tecnología Industrial; Argentina Fil: Monsalve, Leandro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Industrial; Argentina |
description |
In this work electron radiation microdevices were fabricated and characterized. The microdevices consisted of aligned conductive electrospun fibers made of polycaprolactone loaded with multiwalled carbon nanotubes and C60 deposited onto gold interdigitated microelectrodes. They were capable of permanently increasing their conductivity upon exposure to electron beam irradiation from 0.02 pC μm-2 accelerated at 10 and 20 keV. This phenomenon could be explained due to the ability of C60 to trap and stabilize negative charges and thus contribute to the conductivity of the polymer composite. The microdevices achieved their maximum conductivity after an irradiation between 0.22 and 0.27 pC μm-2 and this maximum was dependent of the electron acceleration. Montecarlo simulations were performed to explain dependence as function of electron penetration in the polymer composite. Moreover, the microdevices irradiated at 20 keV maintained their final conductivity and the microdevices irradiated at 10 keV increased their final conductivity after 6 days from irradiation. C60 proved to act as highly efficient electron scavengers within the polymer composite and contribute to its conductivity, and the microdevices have potential application as beta radiation sensors. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/267759 Molinari, Fabricio Nicolás; Mancuso, Maria A.; Bilbao, Emanuel; Giménez, Gustavo; Monsalve, Leandro Nicolas; A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60; Elsevier; Nano Trends; 10; 6-2025; 1-7 2666-9781 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/267759 |
identifier_str_mv |
Molinari, Fabricio Nicolás; Mancuso, Maria A.; Bilbao, Emanuel; Giménez, Gustavo; Monsalve, Leandro Nicolas; A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60; Elsevier; Nano Trends; 10; 6-2025; 1-7 2666-9781 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2666978125000455 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.nwnano.2025.100116 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613090696495104 |
score |
13.070432 |