Inkjet-Printed Conductive Patterns on Electrospun Substrates for the Modular Fabrication of Nonplanar Circuits
- Autores
- Molinari, F. N.; Bilbao, E.; Monsalve, L. N.
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Placing printed conductive patterns onto nonplanar substrates is a challenging task. In this work, we tested a simple method for depositing inkjet-printed conductive patterns onto 3D-printed pieces with cavities and sharp edges. First, a silver nanoparticle ink was used to print conductive patterns onto a flexible and porous substrate made of electrospun polycaprolactone (PCL). Then, the printed patterns were transferred to 3Dprinted pieces made of polylactic acid (PLA) by temperature-promoted adhesion. Finally, the printed patterns were cured to render them conductive. The influence of the number of printed layers on their electrical and mechanical properties was evaluated. The printed patterns were also transferred to flexible substrates, such as thermoplastic polyurethane (TPU) and polyethylene terephthalate (PET) sheets, achieving conductivity after curing. Moreover, the printed patterns were effective for modular interconnection among successive transferred patterns, since it was possible to achieve electrical contact between them during the transfer process.
Fil: Molinari, F. N. Instituto Nacional de Tecnolog a Industrial. Textiles (INTI-Textiles); Argentina
Fil: Molinari, F. N. University of Messina. Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (UNIME); Italia
Fil: Bilbao, E. Instituto Nacional de Tecnolog a Industrial. Micro y Nanotecnolog as (INTI); Argentina
Fil: Monsalve, L. N. Instituto Nacional de Tecnolog a Industrial. Textiles (INTI-Textiles); Argentina
Fil: Monsalve, L. N. Universidad Nacional de San Mart n. Instituto de la Calidad Industrial (UNSAM-INCALIN); Argentina
Fil: Monsalve, L. N. Consejo Nacional de Investigaciones Cient ficas y T cnicas (CONICET); Argentina - Fuente
- Applied Nano, 6 (2025)
- Materia
-
Conductores el ctricos
Tinta
Inyecci n
Circuitos
Circuitos electr nicos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Industrial
- OAI Identificador
- nuevadc:2025MolinariF1_pdf
Ver los metadatos del registro completo
id |
RIINTI_fefd15ee3a175cb0fb478ef21a69d146 |
---|---|
oai_identifier_str |
nuevadc:2025MolinariF1_pdf |
network_acronym_str |
RIINTI |
repository_id_str |
|
network_name_str |
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) |
spelling |
Inkjet-Printed Conductive Patterns on Electrospun Substrates for the Modular Fabrication of Nonplanar CircuitsMolinari, F. N.Bilbao, E.Monsalve, L. N.Conductores el ctricosTintaInyecci nCircuitosCircuitos electr nicosPlacing printed conductive patterns onto nonplanar substrates is a challenging task. In this work, we tested a simple method for depositing inkjet-printed conductive patterns onto 3D-printed pieces with cavities and sharp edges. First, a silver nanoparticle ink was used to print conductive patterns onto a flexible and porous substrate made of electrospun polycaprolactone (PCL). Then, the printed patterns were transferred to 3Dprinted pieces made of polylactic acid (PLA) by temperature-promoted adhesion. Finally, the printed patterns were cured to render them conductive. The influence of the number of printed layers on their electrical and mechanical properties was evaluated. The printed patterns were also transferred to flexible substrates, such as thermoplastic polyurethane (TPU) and polyethylene terephthalate (PET) sheets, achieving conductivity after curing. Moreover, the printed patterns were effective for modular interconnection among successive transferred patterns, since it was possible to achieve electrical contact between them during the transfer process.Fil: Molinari, F. N. Instituto Nacional de Tecnolog a Industrial. Textiles (INTI-Textiles); ArgentinaFil: Molinari, F. N. University of Messina. Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (UNIME); ItaliaFil: Bilbao, E. Instituto Nacional de Tecnolog a Industrial. Micro y Nanotecnolog as (INTI); ArgentinaFil: Monsalve, L. N. Instituto Nacional de Tecnolog a Industrial. Textiles (INTI-Textiles); ArgentinaFil: Monsalve, L. N. Universidad Nacional de San Mart n. Instituto de la Calidad Industrial (UNSAM-INCALIN); ArgentinaFil: Monsalve, L. N. Consejo Nacional de Investigaciones Cient ficas y T cnicas (CONICET); ArgentinaMDPI2025info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf2025MolinariF1.pdfhttps://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2025Moli/nariF1_p.dir/doc.pdfApplied Nano, 6 (2025)reponame:Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)instname:Instituto Nacional de Tecnología Industrialenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/openAccess2025-09-29T15:02:01Znuevadc:2025MolinariF1_pdfinstacron:INTIInstitucionalhttps://app.inti.gob.ar/greenstone3/biblioOrganismo científico-tecnológicohttps://argentina.gob.ar/intihttps://app.inti.gob.ar/greenstone3/oaiserver?verb=Identifypfalcato@inti.gob.arArgentinaopendoar:2025-09-29 15:02:02.323Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) - Instituto Nacional de Tecnología Industrialfalse |
dc.title.none.fl_str_mv |
Inkjet-Printed Conductive Patterns on Electrospun Substrates for the Modular Fabrication of Nonplanar Circuits |
title |
Inkjet-Printed Conductive Patterns on Electrospun Substrates for the Modular Fabrication of Nonplanar Circuits |
spellingShingle |
Inkjet-Printed Conductive Patterns on Electrospun Substrates for the Modular Fabrication of Nonplanar Circuits Molinari, F. N. Conductores el ctricos Tinta Inyecci n Circuitos Circuitos electr nicos |
title_short |
Inkjet-Printed Conductive Patterns on Electrospun Substrates for the Modular Fabrication of Nonplanar Circuits |
title_full |
Inkjet-Printed Conductive Patterns on Electrospun Substrates for the Modular Fabrication of Nonplanar Circuits |
title_fullStr |
Inkjet-Printed Conductive Patterns on Electrospun Substrates for the Modular Fabrication of Nonplanar Circuits |
title_full_unstemmed |
Inkjet-Printed Conductive Patterns on Electrospun Substrates for the Modular Fabrication of Nonplanar Circuits |
title_sort |
Inkjet-Printed Conductive Patterns on Electrospun Substrates for the Modular Fabrication of Nonplanar Circuits |
dc.creator.none.fl_str_mv |
Molinari, F. N. Bilbao, E. Monsalve, L. N. |
author |
Molinari, F. N. |
author_facet |
Molinari, F. N. Bilbao, E. Monsalve, L. N. |
author_role |
author |
author2 |
Bilbao, E. Monsalve, L. N. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Conductores el ctricos Tinta Inyecci n Circuitos Circuitos electr nicos |
topic |
Conductores el ctricos Tinta Inyecci n Circuitos Circuitos electr nicos |
dc.description.none.fl_txt_mv |
Placing printed conductive patterns onto nonplanar substrates is a challenging task. In this work, we tested a simple method for depositing inkjet-printed conductive patterns onto 3D-printed pieces with cavities and sharp edges. First, a silver nanoparticle ink was used to print conductive patterns onto a flexible and porous substrate made of electrospun polycaprolactone (PCL). Then, the printed patterns were transferred to 3Dprinted pieces made of polylactic acid (PLA) by temperature-promoted adhesion. Finally, the printed patterns were cured to render them conductive. The influence of the number of printed layers on their electrical and mechanical properties was evaluated. The printed patterns were also transferred to flexible substrates, such as thermoplastic polyurethane (TPU) and polyethylene terephthalate (PET) sheets, achieving conductivity after curing. Moreover, the printed patterns were effective for modular interconnection among successive transferred patterns, since it was possible to achieve electrical contact between them during the transfer process. Fil: Molinari, F. N. Instituto Nacional de Tecnolog a Industrial. Textiles (INTI-Textiles); Argentina Fil: Molinari, F. N. University of Messina. Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (UNIME); Italia Fil: Bilbao, E. Instituto Nacional de Tecnolog a Industrial. Micro y Nanotecnolog as (INTI); Argentina Fil: Monsalve, L. N. Instituto Nacional de Tecnolog a Industrial. Textiles (INTI-Textiles); Argentina Fil: Monsalve, L. N. Universidad Nacional de San Mart n. Instituto de la Calidad Industrial (UNSAM-INCALIN); Argentina Fil: Monsalve, L. N. Consejo Nacional de Investigaciones Cient ficas y T cnicas (CONICET); Argentina |
description |
Placing printed conductive patterns onto nonplanar substrates is a challenging task. In this work, we tested a simple method for depositing inkjet-printed conductive patterns onto 3D-printed pieces with cavities and sharp edges. First, a silver nanoparticle ink was used to print conductive patterns onto a flexible and porous substrate made of electrospun polycaprolactone (PCL). Then, the printed patterns were transferred to 3Dprinted pieces made of polylactic acid (PLA) by temperature-promoted adhesion. Finally, the printed patterns were cured to render them conductive. The influence of the number of printed layers on their electrical and mechanical properties was evaluated. The printed patterns were also transferred to flexible substrates, such as thermoplastic polyurethane (TPU) and polyethylene terephthalate (PET) sheets, achieving conductivity after curing. Moreover, the printed patterns were effective for modular interconnection among successive transferred patterns, since it was possible to achieve electrical contact between them during the transfer process. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
2025MolinariF1.pdf https://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2025Moli/nariF1_p.dir/doc.pdf |
identifier_str_mv |
2025MolinariF1.pdf |
url |
https://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2025Moli/nariF1_p.dir/doc.pdf |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ openAccess |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
Applied Nano, 6 (2025) reponame:Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) instname:Instituto Nacional de Tecnología Industrial |
reponame_str |
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) |
collection |
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) |
instname_str |
Instituto Nacional de Tecnología Industrial |
repository.name.fl_str_mv |
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) - Instituto Nacional de Tecnología Industrial |
repository.mail.fl_str_mv |
pfalcato@inti.gob.ar |
_version_ |
1844623655304167424 |
score |
12.559606 |