On A-Parallelism and A-Birkhoff James Orthogonality of Operators
- Autores
- Bottazzi, Tamara Paula; Conde, Cristian Marcelo; Feki, Kais
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión aceptada
- Descripción
- Fil: Bottazzi, Tamara Paula. Universidad Nacional de Río Negro. Centro Interdisciplinario de Telecomunicaciones, Electrónica, Computación y Ciencia Aplicada. Río Negro, Argentina.
Fil: Conde, Cristian Marcelo. Instituto de Ciencias, Universidad Nacional de General Sarmiento
Fil: Feki, Kais. Laboratory Physics-Mathematics and Applications (LR/13/ES-22), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
In this paper, we establish several characterizations of the A-parallelism of bounded linear operators with respect to the semi-norm induced by a positive operator A acting on a complex Hilbert space. Among other things, we investigate the relationship between A- seminorm-parallelism and A-Birkhoff-James orthogonality of A-bounded operators. In particular, we characterize A-bounded operators which satisfy the A-Daugavet equation. In addition, we relate the A-Birkhoff- James orthogonality of operators and distance formulas and we give an explicit formula of the center mass for A-bounded operators. Some other related results are also discussed
En este artículo, establecemos varias caracterizaciones del A-paralelismo de operadores lineales acotados respecto de la seminorma inducida por un operador positivo A que actúa sobre un espacio de Hilbert complejo. Entre otras cosas, investigamos la relación entren A-paralelismo en seminorma y A- ortogonalidad Birkhoff-James de operadores A-acotados. En particular, caracterizamos operadores A-acotados que satisfacen la ecuación A-Daugavet. Además, relacionamos A- ortogonalidad Birkhoff-James de operadores y fórmulas de distancia y dame una fómrula explícita del centro de masa de operadores A-acotados. - Materia
-
Ciencias Exactas y Naturales
Positive operator
Numerical radius
Orthogonality
Parallelism
Ciencias Exactas y Naturales - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de Río Negro
- OAI Identificador
- oai:rid.unrn.edu.ar:20.500.12049/8719
Ver los metadatos del registro completo
id |
RIDUNRN_852fa059e575668a48a8fade024ebece |
---|---|
oai_identifier_str |
oai:rid.unrn.edu.ar:20.500.12049/8719 |
network_acronym_str |
RIDUNRN |
repository_id_str |
4369 |
network_name_str |
RID-UNRN (UNRN) |
spelling |
On A-Parallelism and A-Birkhoff James Orthogonality of OperatorsBottazzi, Tamara PaulaConde, Cristian MarceloFeki, KaisCiencias Exactas y NaturalesPositive operatorNumerical radiusOrthogonalityParallelismCiencias Exactas y NaturalesFil: Bottazzi, Tamara Paula. Universidad Nacional de Río Negro. Centro Interdisciplinario de Telecomunicaciones, Electrónica, Computación y Ciencia Aplicada. Río Negro, Argentina.Fil: Conde, Cristian Marcelo. Instituto de Ciencias, Universidad Nacional de General SarmientoFil: Feki, Kais. Laboratory Physics-Mathematics and Applications (LR/13/ES-22), Faculty of Sciences of Sfax, University of Sfax, Sfax, TunisiaIn this paper, we establish several characterizations of the A-parallelism of bounded linear operators with respect to the semi-norm induced by a positive operator A acting on a complex Hilbert space. Among other things, we investigate the relationship between A- seminorm-parallelism and A-Birkhoff-James orthogonality of A-bounded operators. In particular, we characterize A-bounded operators which satisfy the A-Daugavet equation. In addition, we relate the A-Birkhoff- James orthogonality of operators and distance formulas and we give an explicit formula of the center mass for A-bounded operators. Some other related results are also discussedEn este artículo, establecemos varias caracterizaciones del A-paralelismo de operadores lineales acotados respecto de la seminorma inducida por un operador positivo A que actúa sobre un espacio de Hilbert complejo. Entre otras cosas, investigamos la relación entren A-paralelismo en seminorma y A- ortogonalidad Birkhoff-James de operadores A-acotados. En particular, caracterizamos operadores A-acotados que satisfacen la ecuación A-Daugavet. Además, relacionamos A- ortogonalidad Birkhoff-James de operadores y fórmulas de distancia y dame una fómrula explícita del centro de masa de operadores A-acotados.Springer Birkhauser Verlag Basel2021-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfBottazzi, T., Conde, C. y Feki, K. (2021). On A-Parallelism and A-Birkhoff James Orthogonality of Operators. Results Math 76, 209.1422-6383http://rid.unrn.edu.ar/handle/20.500.12049/8719https://doi.org/10.1007/s00025-021-01515-1enghttps://www.springer.com/journal/2576Results in Mathematicsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/reponame:RID-UNRN (UNRN)instname:Universidad Nacional de Río Negro2025-09-29T14:29:29Zoai:rid.unrn.edu.ar:20.500.12049/8719instacron:UNRNInstitucionalhttps://rid.unrn.edu.ar/jspui/Universidad públicaNo correspondehttps://rid.unrn.edu.ar/oai/snrdrid@unrn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:43692025-09-29 14:29:29.394RID-UNRN (UNRN) - Universidad Nacional de Río Negrofalse |
dc.title.none.fl_str_mv |
On A-Parallelism and A-Birkhoff James Orthogonality of Operators |
title |
On A-Parallelism and A-Birkhoff James Orthogonality of Operators |
spellingShingle |
On A-Parallelism and A-Birkhoff James Orthogonality of Operators Bottazzi, Tamara Paula Ciencias Exactas y Naturales Positive operator Numerical radius Orthogonality Parallelism Ciencias Exactas y Naturales |
title_short |
On A-Parallelism and A-Birkhoff James Orthogonality of Operators |
title_full |
On A-Parallelism and A-Birkhoff James Orthogonality of Operators |
title_fullStr |
On A-Parallelism and A-Birkhoff James Orthogonality of Operators |
title_full_unstemmed |
On A-Parallelism and A-Birkhoff James Orthogonality of Operators |
title_sort |
On A-Parallelism and A-Birkhoff James Orthogonality of Operators |
dc.creator.none.fl_str_mv |
Bottazzi, Tamara Paula Conde, Cristian Marcelo Feki, Kais |
author |
Bottazzi, Tamara Paula |
author_facet |
Bottazzi, Tamara Paula Conde, Cristian Marcelo Feki, Kais |
author_role |
author |
author2 |
Conde, Cristian Marcelo Feki, Kais |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas y Naturales Positive operator Numerical radius Orthogonality Parallelism Ciencias Exactas y Naturales |
topic |
Ciencias Exactas y Naturales Positive operator Numerical radius Orthogonality Parallelism Ciencias Exactas y Naturales |
dc.description.none.fl_txt_mv |
Fil: Bottazzi, Tamara Paula. Universidad Nacional de Río Negro. Centro Interdisciplinario de Telecomunicaciones, Electrónica, Computación y Ciencia Aplicada. Río Negro, Argentina. Fil: Conde, Cristian Marcelo. Instituto de Ciencias, Universidad Nacional de General Sarmiento Fil: Feki, Kais. Laboratory Physics-Mathematics and Applications (LR/13/ES-22), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia In this paper, we establish several characterizations of the A-parallelism of bounded linear operators with respect to the semi-norm induced by a positive operator A acting on a complex Hilbert space. Among other things, we investigate the relationship between A- seminorm-parallelism and A-Birkhoff-James orthogonality of A-bounded operators. In particular, we characterize A-bounded operators which satisfy the A-Daugavet equation. In addition, we relate the A-Birkhoff- James orthogonality of operators and distance formulas and we give an explicit formula of the center mass for A-bounded operators. Some other related results are also discussed En este artículo, establecemos varias caracterizaciones del A-paralelismo de operadores lineales acotados respecto de la seminorma inducida por un operador positivo A que actúa sobre un espacio de Hilbert complejo. Entre otras cosas, investigamos la relación entren A-paralelismo en seminorma y A- ortogonalidad Birkhoff-James de operadores A-acotados. En particular, caracterizamos operadores A-acotados que satisfacen la ecuación A-Daugavet. Además, relacionamos A- ortogonalidad Birkhoff-James de operadores y fórmulas de distancia y dame una fómrula explícita del centro de masa de operadores A-acotados. |
description |
Fil: Bottazzi, Tamara Paula. Universidad Nacional de Río Negro. Centro Interdisciplinario de Telecomunicaciones, Electrónica, Computación y Ciencia Aplicada. Río Negro, Argentina. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
Bottazzi, T., Conde, C. y Feki, K. (2021). On A-Parallelism and A-Birkhoff James Orthogonality of Operators. Results Math 76, 209. 1422-6383 http://rid.unrn.edu.ar/handle/20.500.12049/8719 https://doi.org/10.1007/s00025-021-01515-1 |
identifier_str_mv |
Bottazzi, T., Conde, C. y Feki, K. (2021). On A-Parallelism and A-Birkhoff James Orthogonality of Operators. Results Math 76, 209. 1422-6383 |
url |
http://rid.unrn.edu.ar/handle/20.500.12049/8719 https://doi.org/10.1007/s00025-021-01515-1 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://www.springer.com/journal/25 76 Results in Mathematics |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Birkhauser Verlag Basel |
publisher.none.fl_str_mv |
Springer Birkhauser Verlag Basel |
dc.source.none.fl_str_mv |
reponame:RID-UNRN (UNRN) instname:Universidad Nacional de Río Negro |
reponame_str |
RID-UNRN (UNRN) |
collection |
RID-UNRN (UNRN) |
instname_str |
Universidad Nacional de Río Negro |
repository.name.fl_str_mv |
RID-UNRN (UNRN) - Universidad Nacional de Río Negro |
repository.mail.fl_str_mv |
rid@unrn.edu.ar |
_version_ |
1844621625588187136 |
score |
12.559606 |