A study of orthogonality of bounded linear operators

Autores
Bottazzi, Tamara Paula; Conde, Cristian; Sain, Debmalya
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión aceptada
Descripción
Fil: Bottazzi, Tamara P. Universidad Nacional de Río Negro. LaPAC. Río Negro, Argentina.
Fil: Conde, Cristian. Instituto Argentino de Matemática “Alberto P. Calderón". Buenos Aires, Argentina.
Fil: Conde, Cristian. Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento. Los Polvorines, Argentina.
Fil: Sain, Debmalya. Indian Institute of Science, Bengaluru, Karnataka, India
We study Birkhoff-James orthogonality and isosceles orthogonality of bounded linear operators between Hilbert spaces and Banach spaces. We explore Birkhoff-James orthogonality of bounded linear operators in light of a new notion introduced by us and also discuss some of the possible applications in this regard. We also study isosceles orthogonality of bounded (positive) linear operators on a Hilbert space and some of the related properties, including that of operators having disjoint support. We further explore the relations between Birkhoff-James orthogonality and isosceles orthogonality in a general Banach space. Birkhoff-James orthogonality and isosceles orthogonality and norm attainment set and disjoint support
Estudiamos las ortogonalidades de tipo Birkhoff-James orthogonality e isósceles entre operadores lineales y acotados de espacios de Hilbert y Banach.
Materia
Ciencias Exactas y Naturales
Birkhoff-James Orthogonality
Isosceles Orthogonality
Norm Attainment Set
Disjoint Support
Ciencias Exactas y Naturales
Nivel de accesibilidad
acceso restringido
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
RID-UNRN (UNRN)
Institución
Universidad Nacional de Río Negro
OAI Identificador
oai:rid.unrn.edu.ar:20.500.12049/5467

id RIDUNRN_1fb0c436680154b51019af42ae92815d
oai_identifier_str oai:rid.unrn.edu.ar:20.500.12049/5467
network_acronym_str RIDUNRN
repository_id_str 4369
network_name_str RID-UNRN (UNRN)
spelling A study of orthogonality of bounded linear operatorsBottazzi, Tamara PaulaConde, CristianSain, DebmalyaCiencias Exactas y NaturalesBirkhoff-James OrthogonalityIsosceles OrthogonalityNorm Attainment SetDisjoint SupportCiencias Exactas y NaturalesFil: Bottazzi, Tamara P. Universidad Nacional de Río Negro. LaPAC. Río Negro, Argentina.Fil: Conde, Cristian. Instituto Argentino de Matemática “Alberto P. Calderón". Buenos Aires, Argentina.Fil: Conde, Cristian. Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento. Los Polvorines, Argentina.Fil: Sain, Debmalya. Indian Institute of Science, Bengaluru, Karnataka, IndiaWe study Birkhoff-James orthogonality and isosceles orthogonality of bounded linear operators between Hilbert spaces and Banach spaces. We explore Birkhoff-James orthogonality of bounded linear operators in light of a new notion introduced by us and also discuss some of the possible applications in this regard. We also study isosceles orthogonality of bounded (positive) linear operators on a Hilbert space and some of the related properties, including that of operators having disjoint support. We further explore the relations between Birkhoff-James orthogonality and isosceles orthogonality in a general Banach space. Birkhoff-James orthogonality and isosceles orthogonality and norm attainment set and disjoint supportEstudiamos las ortogonalidades de tipo Birkhoff-James orthogonality e isósceles entre operadores lineales y acotados de espacios de Hilbert y Banach.Springer2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfBottazzi, Tamara., Conde, Cristian & Sain, Debmalya (2020) A study of orthogonality of bounded linear operators. Banach J. Math. Anal.; 14; 1001–10182662-2033http://rid.unrn.edu.ar/handle/20.500.12049/5467https://doi.org/10.1007/s43037-019-00050-0eng14Banach Journal of Mathematical Analysisinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/reponame:RID-UNRN (UNRN)instname:Universidad Nacional de Río Negro2025-09-11T10:49:50Zoai:rid.unrn.edu.ar:20.500.12049/5467instacron:UNRNInstitucionalhttps://rid.unrn.edu.ar/jspui/Universidad públicaNo correspondehttps://rid.unrn.edu.ar/oai/snrdrid@unrn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:43692025-09-11 10:49:51.161RID-UNRN (UNRN) - Universidad Nacional de Río Negrofalse
dc.title.none.fl_str_mv A study of orthogonality of bounded linear operators
title A study of orthogonality of bounded linear operators
spellingShingle A study of orthogonality of bounded linear operators
Bottazzi, Tamara Paula
Ciencias Exactas y Naturales
Birkhoff-James Orthogonality
Isosceles Orthogonality
Norm Attainment Set
Disjoint Support
Ciencias Exactas y Naturales
title_short A study of orthogonality of bounded linear operators
title_full A study of orthogonality of bounded linear operators
title_fullStr A study of orthogonality of bounded linear operators
title_full_unstemmed A study of orthogonality of bounded linear operators
title_sort A study of orthogonality of bounded linear operators
dc.creator.none.fl_str_mv Bottazzi, Tamara Paula
Conde, Cristian
Sain, Debmalya
author Bottazzi, Tamara Paula
author_facet Bottazzi, Tamara Paula
Conde, Cristian
Sain, Debmalya
author_role author
author2 Conde, Cristian
Sain, Debmalya
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Exactas y Naturales
Birkhoff-James Orthogonality
Isosceles Orthogonality
Norm Attainment Set
Disjoint Support
Ciencias Exactas y Naturales
topic Ciencias Exactas y Naturales
Birkhoff-James Orthogonality
Isosceles Orthogonality
Norm Attainment Set
Disjoint Support
Ciencias Exactas y Naturales
dc.description.none.fl_txt_mv Fil: Bottazzi, Tamara P. Universidad Nacional de Río Negro. LaPAC. Río Negro, Argentina.
Fil: Conde, Cristian. Instituto Argentino de Matemática “Alberto P. Calderón". Buenos Aires, Argentina.
Fil: Conde, Cristian. Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento. Los Polvorines, Argentina.
Fil: Sain, Debmalya. Indian Institute of Science, Bengaluru, Karnataka, India
We study Birkhoff-James orthogonality and isosceles orthogonality of bounded linear operators between Hilbert spaces and Banach spaces. We explore Birkhoff-James orthogonality of bounded linear operators in light of a new notion introduced by us and also discuss some of the possible applications in this regard. We also study isosceles orthogonality of bounded (positive) linear operators on a Hilbert space and some of the related properties, including that of operators having disjoint support. We further explore the relations between Birkhoff-James orthogonality and isosceles orthogonality in a general Banach space. Birkhoff-James orthogonality and isosceles orthogonality and norm attainment set and disjoint support
Estudiamos las ortogonalidades de tipo Birkhoff-James orthogonality e isósceles entre operadores lineales y acotados de espacios de Hilbert y Banach.
description Fil: Bottazzi, Tamara P. Universidad Nacional de Río Negro. LaPAC. Río Negro, Argentina.
publishDate 2020
dc.date.none.fl_str_mv 2020-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str acceptedVersion
dc.identifier.none.fl_str_mv Bottazzi, Tamara., Conde, Cristian & Sain, Debmalya (2020) A study of orthogonality of bounded linear operators. Banach J. Math. Anal.; 14; 1001–1018
2662-2033
http://rid.unrn.edu.ar/handle/20.500.12049/5467
https://doi.org/10.1007/s43037-019-00050-0
identifier_str_mv Bottazzi, Tamara., Conde, Cristian & Sain, Debmalya (2020) A study of orthogonality of bounded linear operators. Banach J. Math. Anal.; 14; 1001–1018
2662-2033
url http://rid.unrn.edu.ar/handle/20.500.12049/5467
https://doi.org/10.1007/s43037-019-00050-0
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 14
Banach Journal of Mathematical Analysis
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:RID-UNRN (UNRN)
instname:Universidad Nacional de Río Negro
reponame_str RID-UNRN (UNRN)
collection RID-UNRN (UNRN)
instname_str Universidad Nacional de Río Negro
repository.name.fl_str_mv RID-UNRN (UNRN) - Universidad Nacional de Río Negro
repository.mail.fl_str_mv rid@unrn.edu.ar
_version_ 1842976481608728576
score 12.993085