A study of orthogonality of bounded linear operators
- Autores
- Bottazzi, Tamara Paula; Conde, Cristian; Sain, Debmalya
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión aceptada
- Descripción
- Fil: Bottazzi, Tamara P. Universidad Nacional de Río Negro. LaPAC. Río Negro, Argentina.
Fil: Conde, Cristian. Instituto Argentino de Matemática “Alberto P. Calderón". Buenos Aires, Argentina.
Fil: Conde, Cristian. Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento. Los Polvorines, Argentina.
Fil: Sain, Debmalya. Indian Institute of Science, Bengaluru, Karnataka, India
We study Birkhoff-James orthogonality and isosceles orthogonality of bounded linear operators between Hilbert spaces and Banach spaces. We explore Birkhoff-James orthogonality of bounded linear operators in light of a new notion introduced by us and also discuss some of the possible applications in this regard. We also study isosceles orthogonality of bounded (positive) linear operators on a Hilbert space and some of the related properties, including that of operators having disjoint support. We further explore the relations between Birkhoff-James orthogonality and isosceles orthogonality in a general Banach space. Birkhoff-James orthogonality and isosceles orthogonality and norm attainment set and disjoint support
Estudiamos las ortogonalidades de tipo Birkhoff-James orthogonality e isósceles entre operadores lineales y acotados de espacios de Hilbert y Banach. - Materia
-
Ciencias Exactas y Naturales
Birkhoff-James Orthogonality
Isosceles Orthogonality
Norm Attainment Set
Disjoint Support
Ciencias Exactas y Naturales - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de Río Negro
- OAI Identificador
- oai:rid.unrn.edu.ar:20.500.12049/5467
Ver los metadatos del registro completo
id |
RIDUNRN_1fb0c436680154b51019af42ae92815d |
---|---|
oai_identifier_str |
oai:rid.unrn.edu.ar:20.500.12049/5467 |
network_acronym_str |
RIDUNRN |
repository_id_str |
4369 |
network_name_str |
RID-UNRN (UNRN) |
spelling |
A study of orthogonality of bounded linear operatorsBottazzi, Tamara PaulaConde, CristianSain, DebmalyaCiencias Exactas y NaturalesBirkhoff-James OrthogonalityIsosceles OrthogonalityNorm Attainment SetDisjoint SupportCiencias Exactas y NaturalesFil: Bottazzi, Tamara P. Universidad Nacional de Río Negro. LaPAC. Río Negro, Argentina.Fil: Conde, Cristian. Instituto Argentino de Matemática “Alberto P. Calderón". Buenos Aires, Argentina.Fil: Conde, Cristian. Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento. Los Polvorines, Argentina.Fil: Sain, Debmalya. Indian Institute of Science, Bengaluru, Karnataka, IndiaWe study Birkhoff-James orthogonality and isosceles orthogonality of bounded linear operators between Hilbert spaces and Banach spaces. We explore Birkhoff-James orthogonality of bounded linear operators in light of a new notion introduced by us and also discuss some of the possible applications in this regard. We also study isosceles orthogonality of bounded (positive) linear operators on a Hilbert space and some of the related properties, including that of operators having disjoint support. We further explore the relations between Birkhoff-James orthogonality and isosceles orthogonality in a general Banach space. Birkhoff-James orthogonality and isosceles orthogonality and norm attainment set and disjoint supportEstudiamos las ortogonalidades de tipo Birkhoff-James orthogonality e isósceles entre operadores lineales y acotados de espacios de Hilbert y Banach.Springer2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfBottazzi, Tamara., Conde, Cristian & Sain, Debmalya (2020) A study of orthogonality of bounded linear operators. Banach J. Math. Anal.; 14; 1001–10182662-2033http://rid.unrn.edu.ar/handle/20.500.12049/5467https://doi.org/10.1007/s43037-019-00050-0eng14Banach Journal of Mathematical Analysisinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/reponame:RID-UNRN (UNRN)instname:Universidad Nacional de Río Negro2025-09-11T10:49:50Zoai:rid.unrn.edu.ar:20.500.12049/5467instacron:UNRNInstitucionalhttps://rid.unrn.edu.ar/jspui/Universidad públicaNo correspondehttps://rid.unrn.edu.ar/oai/snrdrid@unrn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:43692025-09-11 10:49:51.161RID-UNRN (UNRN) - Universidad Nacional de Río Negrofalse |
dc.title.none.fl_str_mv |
A study of orthogonality of bounded linear operators |
title |
A study of orthogonality of bounded linear operators |
spellingShingle |
A study of orthogonality of bounded linear operators Bottazzi, Tamara Paula Ciencias Exactas y Naturales Birkhoff-James Orthogonality Isosceles Orthogonality Norm Attainment Set Disjoint Support Ciencias Exactas y Naturales |
title_short |
A study of orthogonality of bounded linear operators |
title_full |
A study of orthogonality of bounded linear operators |
title_fullStr |
A study of orthogonality of bounded linear operators |
title_full_unstemmed |
A study of orthogonality of bounded linear operators |
title_sort |
A study of orthogonality of bounded linear operators |
dc.creator.none.fl_str_mv |
Bottazzi, Tamara Paula Conde, Cristian Sain, Debmalya |
author |
Bottazzi, Tamara Paula |
author_facet |
Bottazzi, Tamara Paula Conde, Cristian Sain, Debmalya |
author_role |
author |
author2 |
Conde, Cristian Sain, Debmalya |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas y Naturales Birkhoff-James Orthogonality Isosceles Orthogonality Norm Attainment Set Disjoint Support Ciencias Exactas y Naturales |
topic |
Ciencias Exactas y Naturales Birkhoff-James Orthogonality Isosceles Orthogonality Norm Attainment Set Disjoint Support Ciencias Exactas y Naturales |
dc.description.none.fl_txt_mv |
Fil: Bottazzi, Tamara P. Universidad Nacional de Río Negro. LaPAC. Río Negro, Argentina. Fil: Conde, Cristian. Instituto Argentino de Matemática “Alberto P. Calderón". Buenos Aires, Argentina. Fil: Conde, Cristian. Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento. Los Polvorines, Argentina. Fil: Sain, Debmalya. Indian Institute of Science, Bengaluru, Karnataka, India We study Birkhoff-James orthogonality and isosceles orthogonality of bounded linear operators between Hilbert spaces and Banach spaces. We explore Birkhoff-James orthogonality of bounded linear operators in light of a new notion introduced by us and also discuss some of the possible applications in this regard. We also study isosceles orthogonality of bounded (positive) linear operators on a Hilbert space and some of the related properties, including that of operators having disjoint support. We further explore the relations between Birkhoff-James orthogonality and isosceles orthogonality in a general Banach space. Birkhoff-James orthogonality and isosceles orthogonality and norm attainment set and disjoint support Estudiamos las ortogonalidades de tipo Birkhoff-James orthogonality e isósceles entre operadores lineales y acotados de espacios de Hilbert y Banach. |
description |
Fil: Bottazzi, Tamara P. Universidad Nacional de Río Negro. LaPAC. Río Negro, Argentina. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
Bottazzi, Tamara., Conde, Cristian & Sain, Debmalya (2020) A study of orthogonality of bounded linear operators. Banach J. Math. Anal.; 14; 1001–1018 2662-2033 http://rid.unrn.edu.ar/handle/20.500.12049/5467 https://doi.org/10.1007/s43037-019-00050-0 |
identifier_str_mv |
Bottazzi, Tamara., Conde, Cristian & Sain, Debmalya (2020) A study of orthogonality of bounded linear operators. Banach J. Math. Anal.; 14; 1001–1018 2662-2033 |
url |
http://rid.unrn.edu.ar/handle/20.500.12049/5467 https://doi.org/10.1007/s43037-019-00050-0 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
14 Banach Journal of Mathematical Analysis |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:RID-UNRN (UNRN) instname:Universidad Nacional de Río Negro |
reponame_str |
RID-UNRN (UNRN) |
collection |
RID-UNRN (UNRN) |
instname_str |
Universidad Nacional de Río Negro |
repository.name.fl_str_mv |
RID-UNRN (UNRN) - Universidad Nacional de Río Negro |
repository.mail.fl_str_mv |
rid@unrn.edu.ar |
_version_ |
1842976481608728576 |
score |
12.993085 |