On approximate A-seminorm and A-numerical radius orthogonality of operators
- Autores
- Conde, Cristian Marcelo; Feki, K.
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper explores the concept of approximate Birkhoff–Jamesorthogonality in the context of operators on semi-Hilbert spaces. These spacesare generated by positive semi-definite sesquilinear forms. We delve into the fundamentalproperties of this concept and provide several characterizations of it.Using innovative arguments, we extend a widely known result initially proposedby Magajna [17]. Additionally, we improve a recent result by Sen and Paul [24] regardinga characterization of approximate numerical radius orthogonality of twosemi-Hilbert space operators, such that one of them is A-positive. Here, A isassumed to be a positive semi-definite operator.
Fil: Conde, Cristian Marcelo. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento; . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Feki, K.. Najran University; Arabia Saudita - Materia
-
approximate orthogonality
Birkhoff–James orthogonality
positive operator
semi-inner product - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/257932
Ver los metadatos del registro completo
id |
CONICETDig_b6892cc5ec69a5e00fcd4c9a6fbaef13 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/257932 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On approximate A-seminorm and A-numerical radius orthogonality of operatorsConde, Cristian MarceloFeki, K.approximate orthogonalityBirkhoff–James orthogonalitypositive operatorsemi-inner producthttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper explores the concept of approximate Birkhoff–Jamesorthogonality in the context of operators on semi-Hilbert spaces. These spacesare generated by positive semi-definite sesquilinear forms. We delve into the fundamentalproperties of this concept and provide several characterizations of it.Using innovative arguments, we extend a widely known result initially proposedby Magajna [17]. Additionally, we improve a recent result by Sen and Paul [24] regardinga characterization of approximate numerical radius orthogonality of twosemi-Hilbert space operators, such that one of them is A-positive. Here, A isassumed to be a positive semi-definite operator.Fil: Conde, Cristian Marcelo. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento; . Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Feki, K.. Najran University; Arabia SauditaSpringer2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/257932Conde, Cristian Marcelo; Feki, K.; On approximate A-seminorm and A-numerical radius orthogonality of operators; Springer; Acta Mathematica Hungarica; 173; 1; 6-2024; 227-2450236-5294CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s10474-024-01439-6info:eu-repo/semantics/altIdentifier/doi/10.1007/s10474-024-01439-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:46Zoai:ri.conicet.gov.ar:11336/257932instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:46.87CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On approximate A-seminorm and A-numerical radius orthogonality of operators |
title |
On approximate A-seminorm and A-numerical radius orthogonality of operators |
spellingShingle |
On approximate A-seminorm and A-numerical radius orthogonality of operators Conde, Cristian Marcelo approximate orthogonality Birkhoff–James orthogonality positive operator semi-inner product |
title_short |
On approximate A-seminorm and A-numerical radius orthogonality of operators |
title_full |
On approximate A-seminorm and A-numerical radius orthogonality of operators |
title_fullStr |
On approximate A-seminorm and A-numerical radius orthogonality of operators |
title_full_unstemmed |
On approximate A-seminorm and A-numerical radius orthogonality of operators |
title_sort |
On approximate A-seminorm and A-numerical radius orthogonality of operators |
dc.creator.none.fl_str_mv |
Conde, Cristian Marcelo Feki, K. |
author |
Conde, Cristian Marcelo |
author_facet |
Conde, Cristian Marcelo Feki, K. |
author_role |
author |
author2 |
Feki, K. |
author2_role |
author |
dc.subject.none.fl_str_mv |
approximate orthogonality Birkhoff–James orthogonality positive operator semi-inner product |
topic |
approximate orthogonality Birkhoff–James orthogonality positive operator semi-inner product |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper explores the concept of approximate Birkhoff–Jamesorthogonality in the context of operators on semi-Hilbert spaces. These spacesare generated by positive semi-definite sesquilinear forms. We delve into the fundamentalproperties of this concept and provide several characterizations of it.Using innovative arguments, we extend a widely known result initially proposedby Magajna [17]. Additionally, we improve a recent result by Sen and Paul [24] regardinga characterization of approximate numerical radius orthogonality of twosemi-Hilbert space operators, such that one of them is A-positive. Here, A isassumed to be a positive semi-definite operator. Fil: Conde, Cristian Marcelo. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento; . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Feki, K.. Najran University; Arabia Saudita |
description |
This paper explores the concept of approximate Birkhoff–Jamesorthogonality in the context of operators on semi-Hilbert spaces. These spacesare generated by positive semi-definite sesquilinear forms. We delve into the fundamentalproperties of this concept and provide several characterizations of it.Using innovative arguments, we extend a widely known result initially proposedby Magajna [17]. Additionally, we improve a recent result by Sen and Paul [24] regardinga characterization of approximate numerical radius orthogonality of twosemi-Hilbert space operators, such that one of them is A-positive. Here, A isassumed to be a positive semi-definite operator. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/257932 Conde, Cristian Marcelo; Feki, K.; On approximate A-seminorm and A-numerical radius orthogonality of operators; Springer; Acta Mathematica Hungarica; 173; 1; 6-2024; 227-245 0236-5294 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/257932 |
identifier_str_mv |
Conde, Cristian Marcelo; Feki, K.; On approximate A-seminorm and A-numerical radius orthogonality of operators; Springer; Acta Mathematica Hungarica; 173; 1; 6-2024; 227-245 0236-5294 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s10474-024-01439-6 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10474-024-01439-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613431260348416 |
score |
13.070432 |