On approximate A-seminorm and A-numerical radius orthogonality of operators

Autores
Conde, Cristian Marcelo; Feki, K.
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper explores the concept of approximate Birkhoff–Jamesorthogonality in the context of operators on semi-Hilbert spaces. These spacesare generated by positive semi-definite sesquilinear forms. We delve into the fundamentalproperties of this concept and provide several characterizations of it.Using innovative arguments, we extend a widely known result initially proposedby Magajna [17]. Additionally, we improve a recent result by Sen and Paul [24] regardinga characterization of approximate numerical radius orthogonality of twosemi-Hilbert space operators, such that one of them is A-positive. Here, A isassumed to be a positive semi-definite operator.
Fil: Conde, Cristian Marcelo. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento; . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Feki, K.. Najran University; Arabia Saudita
Materia
approximate orthogonality
Birkhoff–James orthogonality
positive operator
semi-inner product
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/257932

id CONICETDig_b6892cc5ec69a5e00fcd4c9a6fbaef13
oai_identifier_str oai:ri.conicet.gov.ar:11336/257932
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On approximate A-seminorm and A-numerical radius orthogonality of operatorsConde, Cristian MarceloFeki, K.approximate orthogonalityBirkhoff–James orthogonalitypositive operatorsemi-inner producthttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper explores the concept of approximate Birkhoff–Jamesorthogonality in the context of operators on semi-Hilbert spaces. These spacesare generated by positive semi-definite sesquilinear forms. We delve into the fundamentalproperties of this concept and provide several characterizations of it.Using innovative arguments, we extend a widely known result initially proposedby Magajna [17]. Additionally, we improve a recent result by Sen and Paul [24] regardinga characterization of approximate numerical radius orthogonality of twosemi-Hilbert space operators, such that one of them is A-positive. Here, A isassumed to be a positive semi-definite operator.Fil: Conde, Cristian Marcelo. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento; . Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Feki, K.. Najran University; Arabia SauditaSpringer2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/257932Conde, Cristian Marcelo; Feki, K.; On approximate A-seminorm and A-numerical radius orthogonality of operators; Springer; Acta Mathematica Hungarica; 173; 1; 6-2024; 227-2450236-5294CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s10474-024-01439-6info:eu-repo/semantics/altIdentifier/doi/10.1007/s10474-024-01439-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:46Zoai:ri.conicet.gov.ar:11336/257932instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:46.87CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On approximate A-seminorm and A-numerical radius orthogonality of operators
title On approximate A-seminorm and A-numerical radius orthogonality of operators
spellingShingle On approximate A-seminorm and A-numerical radius orthogonality of operators
Conde, Cristian Marcelo
approximate orthogonality
Birkhoff–James orthogonality
positive operator
semi-inner product
title_short On approximate A-seminorm and A-numerical radius orthogonality of operators
title_full On approximate A-seminorm and A-numerical radius orthogonality of operators
title_fullStr On approximate A-seminorm and A-numerical radius orthogonality of operators
title_full_unstemmed On approximate A-seminorm and A-numerical radius orthogonality of operators
title_sort On approximate A-seminorm and A-numerical radius orthogonality of operators
dc.creator.none.fl_str_mv Conde, Cristian Marcelo
Feki, K.
author Conde, Cristian Marcelo
author_facet Conde, Cristian Marcelo
Feki, K.
author_role author
author2 Feki, K.
author2_role author
dc.subject.none.fl_str_mv approximate orthogonality
Birkhoff–James orthogonality
positive operator
semi-inner product
topic approximate orthogonality
Birkhoff–James orthogonality
positive operator
semi-inner product
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This paper explores the concept of approximate Birkhoff–Jamesorthogonality in the context of operators on semi-Hilbert spaces. These spacesare generated by positive semi-definite sesquilinear forms. We delve into the fundamentalproperties of this concept and provide several characterizations of it.Using innovative arguments, we extend a widely known result initially proposedby Magajna [17]. Additionally, we improve a recent result by Sen and Paul [24] regardinga characterization of approximate numerical radius orthogonality of twosemi-Hilbert space operators, such that one of them is A-positive. Here, A isassumed to be a positive semi-definite operator.
Fil: Conde, Cristian Marcelo. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento; . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Feki, K.. Najran University; Arabia Saudita
description This paper explores the concept of approximate Birkhoff–Jamesorthogonality in the context of operators on semi-Hilbert spaces. These spacesare generated by positive semi-definite sesquilinear forms. We delve into the fundamentalproperties of this concept and provide several characterizations of it.Using innovative arguments, we extend a widely known result initially proposedby Magajna [17]. Additionally, we improve a recent result by Sen and Paul [24] regardinga characterization of approximate numerical radius orthogonality of twosemi-Hilbert space operators, such that one of them is A-positive. Here, A isassumed to be a positive semi-definite operator.
publishDate 2024
dc.date.none.fl_str_mv 2024-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/257932
Conde, Cristian Marcelo; Feki, K.; On approximate A-seminorm and A-numerical radius orthogonality of operators; Springer; Acta Mathematica Hungarica; 173; 1; 6-2024; 227-245
0236-5294
CONICET Digital
CONICET
url http://hdl.handle.net/11336/257932
identifier_str_mv Conde, Cristian Marcelo; Feki, K.; On approximate A-seminorm and A-numerical radius orthogonality of operators; Springer; Acta Mathematica Hungarica; 173; 1; 6-2024; 227-245
0236-5294
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s10474-024-01439-6
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10474-024-01439-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613431260348416
score 13.070432