Modelos computacionales de movimiento ocular

Autores
Biondi, Juan Andrés
Año de publicación
2021
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Castro, Silvia Mabel
Agamennoni, Osvaldo
Descripción
El análisis de los movimientos oculares constituye un importante desafío dada la gran cantidad de información presente en los mismos. Estos movimientos proveen numerosas claves para estudiar diversos procesos cognitivos considerando, entre otros aspectos, el modo y el tiempo en que se codi fica la información y qué parte de los datos obtenidos se usan o se ignoran. Avanzar en el entendimiento de los procesos involucrados en tareas de alta carga cognitiva puede ayudar en la detección temprana de enfermedades neurodegenerativas tales como el mal de Alzheimer o el de Parkinson. A su vez, la comprensión de estos procesos puede ampliar el abordaje de una gran variedad de temas vinculados con el modelado y control del sistema oculomotor humano. Durante el desarrollo de esta Tesis Doctoral se llevaron a cabo tres experimentos que utilizan técnicas de deep-learning y modelos lineales de efecto mixto a n de identi car patrones de movimiento ocular a partir del estudio de situaciones controladas. La primera experiencia tiene como objetivo diferenciar adultos mayores sanos de adultos mayores con posible enfermedad de Alzheimer, utilizando deep-learning con denoise-sparse-autoencoders y un clasifi cador, a partir de información del movimiento ocular durante la lectura. Los resultados obtenidos, con un 89;8% de efectividad en la clasi ficación por oración y 100% por sujeto, son satisfactorios. Esto sugiere que el uso de esta técnica es una alternativa factible para esta tarea. La segunda experiencia tiene como objetivo demostrar la factibilidad de la utilización de la dilatación de la pupila como un marcador cognitivo, en este caso mediante modelos lineales de efecto mixto. Los resultados indican que la dilatación se ve influenciada por la carga cognitiva, la semántica y las características específi cas de la oración, por lo que representa una alternativa viable para el análisis cognitivo. El tercero y último experimento tiene como objetivo comprobar la efectividad de la utilización de redes neuronales recurrentes, con unidades LSTM, para lograr una clasifi cación efectiva en rangos etarios correspondientes a jóvenes sanos y adultos mayores sanos, a partir del análisis de la dinámica de la pupila. Los resultados obtenidos demuestran que la utilización de esta técnica tiene un alto potencial en este campo logrando clasifi car jóvenes vs. adultos mayores con una efectividad media por oración de 76;99% y una efectividad media por sujeto del 90;24 %, utilizando información del ojo derecho o información binocular. Los resultados de estos estudios permiten afi rmar que la utilización de técnicas de deep learning, que no han sido exploradas para resolver problemas como los planteados utilizando eye-tracking, constituyen un gran área de interés.
TEXTO PARCIAL en período de teletrabajo
Fil: Biondi, Juan Andrés. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Visualización y Computación Gráfica; Argentina
Materia
Inteligencia artificial
Ciencias de la computación
Movimiento ocular
Deep-learning
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
Institución
Universidad Nacional del Sur
OAI Identificador
oai:repositorio.bc.uns.edu.ar:123456789/5542

id RID-UNS_1d8e74e64c1728bba13ad7d83a9f413c
oai_identifier_str oai:repositorio.bc.uns.edu.ar:123456789/5542
network_acronym_str RID-UNS
repository_id_str
network_name_str Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
spelling Modelos computacionales de movimiento ocularBiondi, Juan AndrésInteligencia artificialCiencias de la computaciónMovimiento ocularDeep-learningEl análisis de los movimientos oculares constituye un importante desafío dada la gran cantidad de información presente en los mismos. Estos movimientos proveen numerosas claves para estudiar diversos procesos cognitivos considerando, entre otros aspectos, el modo y el tiempo en que se codi fica la información y qué parte de los datos obtenidos se usan o se ignoran. Avanzar en el entendimiento de los procesos involucrados en tareas de alta carga cognitiva puede ayudar en la detección temprana de enfermedades neurodegenerativas tales como el mal de Alzheimer o el de Parkinson. A su vez, la comprensión de estos procesos puede ampliar el abordaje de una gran variedad de temas vinculados con el modelado y control del sistema oculomotor humano. Durante el desarrollo de esta Tesis Doctoral se llevaron a cabo tres experimentos que utilizan técnicas de deep-learning y modelos lineales de efecto mixto a n de identi car patrones de movimiento ocular a partir del estudio de situaciones controladas. La primera experiencia tiene como objetivo diferenciar adultos mayores sanos de adultos mayores con posible enfermedad de Alzheimer, utilizando deep-learning con denoise-sparse-autoencoders y un clasifi cador, a partir de información del movimiento ocular durante la lectura. Los resultados obtenidos, con un 89;8% de efectividad en la clasi ficación por oración y 100% por sujeto, son satisfactorios. Esto sugiere que el uso de esta técnica es una alternativa factible para esta tarea. La segunda experiencia tiene como objetivo demostrar la factibilidad de la utilización de la dilatación de la pupila como un marcador cognitivo, en este caso mediante modelos lineales de efecto mixto. Los resultados indican que la dilatación se ve influenciada por la carga cognitiva, la semántica y las características específi cas de la oración, por lo que representa una alternativa viable para el análisis cognitivo. El tercero y último experimento tiene como objetivo comprobar la efectividad de la utilización de redes neuronales recurrentes, con unidades LSTM, para lograr una clasifi cación efectiva en rangos etarios correspondientes a jóvenes sanos y adultos mayores sanos, a partir del análisis de la dinámica de la pupila. Los resultados obtenidos demuestran que la utilización de esta técnica tiene un alto potencial en este campo logrando clasifi car jóvenes vs. adultos mayores con una efectividad media por oración de 76;99% y una efectividad media por sujeto del 90;24 %, utilizando información del ojo derecho o información binocular. Los resultados de estos estudios permiten afi rmar que la utilización de técnicas de deep learning, que no han sido exploradas para resolver problemas como los planteados utilizando eye-tracking, constituyen un gran área de interés.TEXTO PARCIAL en período de teletrabajoFil: Biondi, Juan Andrés. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Visualización y Computación Gráfica; ArgentinaCastro, Silvia MabelAgamennoni, Osvaldo2021-02-10info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://repositoriodigital.uns.edu.ar/handle/123456789/5542spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)instname:Universidad Nacional del Sur2025-09-04T09:44:48Zoai:repositorio.bc.uns.edu.ar:123456789/5542instacron:UNSInstitucionalhttp://repositoriodigital.uns.edu.ar/Universidad públicaNo correspondehttp://repositoriodigital.uns.edu.ar/oaimesnaola@uns.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:2025-09-04 09:44:48.484Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Surfalse
dc.title.none.fl_str_mv Modelos computacionales de movimiento ocular
title Modelos computacionales de movimiento ocular
spellingShingle Modelos computacionales de movimiento ocular
Biondi, Juan Andrés
Inteligencia artificial
Ciencias de la computación
Movimiento ocular
Deep-learning
title_short Modelos computacionales de movimiento ocular
title_full Modelos computacionales de movimiento ocular
title_fullStr Modelos computacionales de movimiento ocular
title_full_unstemmed Modelos computacionales de movimiento ocular
title_sort Modelos computacionales de movimiento ocular
dc.creator.none.fl_str_mv Biondi, Juan Andrés
author Biondi, Juan Andrés
author_facet Biondi, Juan Andrés
author_role author
dc.contributor.none.fl_str_mv Castro, Silvia Mabel
Agamennoni, Osvaldo
dc.subject.none.fl_str_mv Inteligencia artificial
Ciencias de la computación
Movimiento ocular
Deep-learning
topic Inteligencia artificial
Ciencias de la computación
Movimiento ocular
Deep-learning
dc.description.none.fl_txt_mv El análisis de los movimientos oculares constituye un importante desafío dada la gran cantidad de información presente en los mismos. Estos movimientos proveen numerosas claves para estudiar diversos procesos cognitivos considerando, entre otros aspectos, el modo y el tiempo en que se codi fica la información y qué parte de los datos obtenidos se usan o se ignoran. Avanzar en el entendimiento de los procesos involucrados en tareas de alta carga cognitiva puede ayudar en la detección temprana de enfermedades neurodegenerativas tales como el mal de Alzheimer o el de Parkinson. A su vez, la comprensión de estos procesos puede ampliar el abordaje de una gran variedad de temas vinculados con el modelado y control del sistema oculomotor humano. Durante el desarrollo de esta Tesis Doctoral se llevaron a cabo tres experimentos que utilizan técnicas de deep-learning y modelos lineales de efecto mixto a n de identi car patrones de movimiento ocular a partir del estudio de situaciones controladas. La primera experiencia tiene como objetivo diferenciar adultos mayores sanos de adultos mayores con posible enfermedad de Alzheimer, utilizando deep-learning con denoise-sparse-autoencoders y un clasifi cador, a partir de información del movimiento ocular durante la lectura. Los resultados obtenidos, con un 89;8% de efectividad en la clasi ficación por oración y 100% por sujeto, son satisfactorios. Esto sugiere que el uso de esta técnica es una alternativa factible para esta tarea. La segunda experiencia tiene como objetivo demostrar la factibilidad de la utilización de la dilatación de la pupila como un marcador cognitivo, en este caso mediante modelos lineales de efecto mixto. Los resultados indican que la dilatación se ve influenciada por la carga cognitiva, la semántica y las características específi cas de la oración, por lo que representa una alternativa viable para el análisis cognitivo. El tercero y último experimento tiene como objetivo comprobar la efectividad de la utilización de redes neuronales recurrentes, con unidades LSTM, para lograr una clasifi cación efectiva en rangos etarios correspondientes a jóvenes sanos y adultos mayores sanos, a partir del análisis de la dinámica de la pupila. Los resultados obtenidos demuestran que la utilización de esta técnica tiene un alto potencial en este campo logrando clasifi car jóvenes vs. adultos mayores con una efectividad media por oración de 76;99% y una efectividad media por sujeto del 90;24 %, utilizando información del ojo derecho o información binocular. Los resultados de estos estudios permiten afi rmar que la utilización de técnicas de deep learning, que no han sido exploradas para resolver problemas como los planteados utilizando eye-tracking, constituyen un gran área de interés.
TEXTO PARCIAL en período de teletrabajo
Fil: Biondi, Juan Andrés. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Visualización y Computación Gráfica; Argentina
description El análisis de los movimientos oculares constituye un importante desafío dada la gran cantidad de información presente en los mismos. Estos movimientos proveen numerosas claves para estudiar diversos procesos cognitivos considerando, entre otros aspectos, el modo y el tiempo en que se codi fica la información y qué parte de los datos obtenidos se usan o se ignoran. Avanzar en el entendimiento de los procesos involucrados en tareas de alta carga cognitiva puede ayudar en la detección temprana de enfermedades neurodegenerativas tales como el mal de Alzheimer o el de Parkinson. A su vez, la comprensión de estos procesos puede ampliar el abordaje de una gran variedad de temas vinculados con el modelado y control del sistema oculomotor humano. Durante el desarrollo de esta Tesis Doctoral se llevaron a cabo tres experimentos que utilizan técnicas de deep-learning y modelos lineales de efecto mixto a n de identi car patrones de movimiento ocular a partir del estudio de situaciones controladas. La primera experiencia tiene como objetivo diferenciar adultos mayores sanos de adultos mayores con posible enfermedad de Alzheimer, utilizando deep-learning con denoise-sparse-autoencoders y un clasifi cador, a partir de información del movimiento ocular durante la lectura. Los resultados obtenidos, con un 89;8% de efectividad en la clasi ficación por oración y 100% por sujeto, son satisfactorios. Esto sugiere que el uso de esta técnica es una alternativa factible para esta tarea. La segunda experiencia tiene como objetivo demostrar la factibilidad de la utilización de la dilatación de la pupila como un marcador cognitivo, en este caso mediante modelos lineales de efecto mixto. Los resultados indican que la dilatación se ve influenciada por la carga cognitiva, la semántica y las características específi cas de la oración, por lo que representa una alternativa viable para el análisis cognitivo. El tercero y último experimento tiene como objetivo comprobar la efectividad de la utilización de redes neuronales recurrentes, con unidades LSTM, para lograr una clasifi cación efectiva en rangos etarios correspondientes a jóvenes sanos y adultos mayores sanos, a partir del análisis de la dinámica de la pupila. Los resultados obtenidos demuestran que la utilización de esta técnica tiene un alto potencial en este campo logrando clasifi car jóvenes vs. adultos mayores con una efectividad media por oración de 76;99% y una efectividad media por sujeto del 90;24 %, utilizando información del ojo derecho o información binocular. Los resultados de estos estudios permiten afi rmar que la utilización de técnicas de deep learning, que no han sido exploradas para resolver problemas como los planteados utilizando eye-tracking, constituyen un gran área de interés.
publishDate 2021
dc.date.none.fl_str_mv 2021-02-10
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://repositoriodigital.uns.edu.ar/handle/123456789/5542
url http://repositoriodigital.uns.edu.ar/handle/123456789/5542
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
instname:Universidad Nacional del Sur
reponame_str Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
collection Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
instname_str Universidad Nacional del Sur
repository.name.fl_str_mv Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Sur
repository.mail.fl_str_mv mesnaola@uns.edu.ar
_version_ 1842341319331020800
score 12.623145