Invariants of complex structures on nilmanifolds
- Autores
- Rodríguez Valencia, Edwin Alejandro
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Rodríguez Valencia, Edwin Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Fil: Rodríguez Valencia, Edwin Alejandro. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Rodríguez Valencia, Edwin Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
Let (N, J) be a simply connected 2n-dimensional nilpotent Lie group endowed with an invariant complex structure. We define a left invariant Riemannian metric on N compatible with J to be minimal, if it minimizes the norm of the invariant part of the Ricci tensor among all compatible metrics with the same scalar curvature. In [7], J. Lauret proved that minimal metrics (if any) are unique up to isometry and scaling. This uniqueness allows us to distinguish two complex structures with Riemannian data, giving rise to a great deal of invariants. We show how to use a Riemannian invariant: the eigenvalues of the Ricci operator, polynomial invariants and discrete invariants to give an alternative proof of the pairwise non-isomorphism between the structures which have appeared in the classification of abelian complex structures on 6-dimensional nilpotent Lie algebras given in [1]. We also present some continuous families in dimension 8.
publishedVersion
Fil: Rodríguez Valencia, Edwin Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Fil: Rodríguez Valencia, Edwin Alejandro. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Rodríguez Valencia, Edwin Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
Matemática Pura - Fuente
- eISSN 1212-5059
- Materia
-
Complex
Nilmanifolds
Nilpotent Lie groups
Minimal metrics
Pfaffian forms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/22155
Ver los metadatos del registro completo
id |
RDUUNC_a3d21e4a6678b798b110e318f2a8658c |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/22155 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
Invariants of complex structures on nilmanifoldsRodríguez Valencia, Edwin AlejandroComplexNilmanifoldsNilpotent Lie groupsMinimal metricsPfaffian formsFil: Rodríguez Valencia, Edwin Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Rodríguez Valencia, Edwin Alejandro. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Rodríguez Valencia, Edwin Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.Let (N, J) be a simply connected 2n-dimensional nilpotent Lie group endowed with an invariant complex structure. We define a left invariant Riemannian metric on N compatible with J to be minimal, if it minimizes the norm of the invariant part of the Ricci tensor among all compatible metrics with the same scalar curvature. In [7], J. Lauret proved that minimal metrics (if any) are unique up to isometry and scaling. This uniqueness allows us to distinguish two complex structures with Riemannian data, giving rise to a great deal of invariants. We show how to use a Riemannian invariant: the eigenvalues of the Ricci operator, polynomial invariants and discrete invariants to give an alternative proof of the pairwise non-isomorphism between the structures which have appeared in the classification of abelian complex structures on 6-dimensional nilpotent Lie algebras given in [1]. We also present some continuous families in dimension 8.publishedVersionFil: Rodríguez Valencia, Edwin Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Rodríguez Valencia, Edwin Alejandro. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Rodríguez Valencia, Edwin Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.Matemática Pura2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/11086/22155http://dx.doi.org/10.5817/AM2015-1-27eISSN 1212-5059reponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNCenginfo:eu-repo/semantics/openAccess2025-09-29T13:44:40Zoai:rdu.unc.edu.ar:11086/22155Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-29 13:44:40.902Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
Invariants of complex structures on nilmanifolds |
title |
Invariants of complex structures on nilmanifolds |
spellingShingle |
Invariants of complex structures on nilmanifolds Rodríguez Valencia, Edwin Alejandro Complex Nilmanifolds Nilpotent Lie groups Minimal metrics Pfaffian forms |
title_short |
Invariants of complex structures on nilmanifolds |
title_full |
Invariants of complex structures on nilmanifolds |
title_fullStr |
Invariants of complex structures on nilmanifolds |
title_full_unstemmed |
Invariants of complex structures on nilmanifolds |
title_sort |
Invariants of complex structures on nilmanifolds |
dc.creator.none.fl_str_mv |
Rodríguez Valencia, Edwin Alejandro |
author |
Rodríguez Valencia, Edwin Alejandro |
author_facet |
Rodríguez Valencia, Edwin Alejandro |
author_role |
author |
dc.subject.none.fl_str_mv |
Complex Nilmanifolds Nilpotent Lie groups Minimal metrics Pfaffian forms |
topic |
Complex Nilmanifolds Nilpotent Lie groups Minimal metrics Pfaffian forms |
dc.description.none.fl_txt_mv |
Fil: Rodríguez Valencia, Edwin Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Fil: Rodríguez Valencia, Edwin Alejandro. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Fil: Rodríguez Valencia, Edwin Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina. Let (N, J) be a simply connected 2n-dimensional nilpotent Lie group endowed with an invariant complex structure. We define a left invariant Riemannian metric on N compatible with J to be minimal, if it minimizes the norm of the invariant part of the Ricci tensor among all compatible metrics with the same scalar curvature. In [7], J. Lauret proved that minimal metrics (if any) are unique up to isometry and scaling. This uniqueness allows us to distinguish two complex structures with Riemannian data, giving rise to a great deal of invariants. We show how to use a Riemannian invariant: the eigenvalues of the Ricci operator, polynomial invariants and discrete invariants to give an alternative proof of the pairwise non-isomorphism between the structures which have appeared in the classification of abelian complex structures on 6-dimensional nilpotent Lie algebras given in [1]. We also present some continuous families in dimension 8. publishedVersion Fil: Rodríguez Valencia, Edwin Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Fil: Rodríguez Valencia, Edwin Alejandro. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Fil: Rodríguez Valencia, Edwin Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina. Matemática Pura |
description |
Fil: Rodríguez Valencia, Edwin Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11086/22155 http://dx.doi.org/10.5817/AM2015-1-27 |
url |
http://hdl.handle.net/11086/22155 http://dx.doi.org/10.5817/AM2015-1-27 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
eISSN 1212-5059 reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1844618988436324352 |
score |
13.070432 |