Isometric actions on pseudo-Riemannian nilmanifolds
- Autores
- del Barco, Viviana Jorgelina; Ovando, Gabriela Paola
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work deals with the structure of the isometry group of pseudo-Riemannian 2-step nilmanifolds. We study the action by isometries of several groups and we construct examples showing substantial differences with the Riemannian situation; for instance, the action of the nilradical of the isometry group does not need to be transitive. For a nilpotent Lie group endowed with a left-invariant pseudo-Riemannian metric, we study conditions for which the subgroup of isometries fixing the identity element equals the subgroup of isometric automorphisms. This set equality holds for pseudo- HH -type Lie groups
Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Ovando, Gabriela Paola. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Pseudo-Riemannian Nilmanifolds
Nilpotent Lie Groups
Isometry Groups
Bi-Invariant Metrics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/29835
Ver los metadatos del registro completo
id |
CONICETDig_23cbd778c34e1241669b1e9ca67bea70 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/29835 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Isometric actions on pseudo-Riemannian nilmanifoldsdel Barco, Viviana JorgelinaOvando, Gabriela PaolaPseudo-Riemannian NilmanifoldsNilpotent Lie GroupsIsometry GroupsBi-Invariant Metricshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This work deals with the structure of the isometry group of pseudo-Riemannian 2-step nilmanifolds. We study the action by isometries of several groups and we construct examples showing substantial differences with the Riemannian situation; for instance, the action of the nilradical of the isometry group does not need to be transitive. For a nilpotent Lie group endowed with a left-invariant pseudo-Riemannian metric, we study conditions for which the subgroup of isometries fixing the identity element equals the subgroup of isometric automorphisms. This set equality holds for pseudo- HH -type Lie groupsFil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Ovando, Gabriela Paola. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29835del Barco, Viviana Jorgelina; Ovando, Gabriela Paola; Isometric actions on pseudo-Riemannian nilmanifolds; Springer; Annals Of Global Analysis And Geometry; 45; 2; 2-2014; 95-1100232-704XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10455-013-9389-6info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10455-013-9389-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:08Zoai:ri.conicet.gov.ar:11336/29835instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:09.229CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Isometric actions on pseudo-Riemannian nilmanifolds |
title |
Isometric actions on pseudo-Riemannian nilmanifolds |
spellingShingle |
Isometric actions on pseudo-Riemannian nilmanifolds del Barco, Viviana Jorgelina Pseudo-Riemannian Nilmanifolds Nilpotent Lie Groups Isometry Groups Bi-Invariant Metrics |
title_short |
Isometric actions on pseudo-Riemannian nilmanifolds |
title_full |
Isometric actions on pseudo-Riemannian nilmanifolds |
title_fullStr |
Isometric actions on pseudo-Riemannian nilmanifolds |
title_full_unstemmed |
Isometric actions on pseudo-Riemannian nilmanifolds |
title_sort |
Isometric actions on pseudo-Riemannian nilmanifolds |
dc.creator.none.fl_str_mv |
del Barco, Viviana Jorgelina Ovando, Gabriela Paola |
author |
del Barco, Viviana Jorgelina |
author_facet |
del Barco, Viviana Jorgelina Ovando, Gabriela Paola |
author_role |
author |
author2 |
Ovando, Gabriela Paola |
author2_role |
author |
dc.subject.none.fl_str_mv |
Pseudo-Riemannian Nilmanifolds Nilpotent Lie Groups Isometry Groups Bi-Invariant Metrics |
topic |
Pseudo-Riemannian Nilmanifolds Nilpotent Lie Groups Isometry Groups Bi-Invariant Metrics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This work deals with the structure of the isometry group of pseudo-Riemannian 2-step nilmanifolds. We study the action by isometries of several groups and we construct examples showing substantial differences with the Riemannian situation; for instance, the action of the nilradical of the isometry group does not need to be transitive. For a nilpotent Lie group endowed with a left-invariant pseudo-Riemannian metric, we study conditions for which the subgroup of isometries fixing the identity element equals the subgroup of isometric automorphisms. This set equality holds for pseudo- HH -type Lie groups Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina Fil: Ovando, Gabriela Paola. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
This work deals with the structure of the isometry group of pseudo-Riemannian 2-step nilmanifolds. We study the action by isometries of several groups and we construct examples showing substantial differences with the Riemannian situation; for instance, the action of the nilradical of the isometry group does not need to be transitive. For a nilpotent Lie group endowed with a left-invariant pseudo-Riemannian metric, we study conditions for which the subgroup of isometries fixing the identity element equals the subgroup of isometric automorphisms. This set equality holds for pseudo- HH -type Lie groups |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/29835 del Barco, Viviana Jorgelina; Ovando, Gabriela Paola; Isometric actions on pseudo-Riemannian nilmanifolds; Springer; Annals Of Global Analysis And Geometry; 45; 2; 2-2014; 95-110 0232-704X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/29835 |
identifier_str_mv |
del Barco, Viviana Jorgelina; Ovando, Gabriela Paola; Isometric actions on pseudo-Riemannian nilmanifolds; Springer; Annals Of Global Analysis And Geometry; 45; 2; 2-2014; 95-110 0232-704X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10455-013-9389-6 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10455-013-9389-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613664954384384 |
score |
13.070432 |